School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA.
ASU-SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona, USA.
Astrobiology. 2021 Feb;21(2):177-190. doi: 10.1089/ast.2019.2197. Epub 2020 Oct 16.
The Solar System is becoming increasingly accessible to exploration by robotic missions to search for life. However, astrobiologists currently lack well-defined frameworks to quantitatively assess the chemical space accessible to life in these alien environments. Such frameworks will be critical for developing concrete predictions needed for future mission planning, both to determine the potential viability of life on other worlds and to anticipate the molecular biosignatures that life could produce. Here, we describe how uniting existing methods provides a framework to study the accessibility of biochemical space across diverse planetary environments. Our approach combines observational data from planetary missions with genomic data catalogued from across Earth and analyzed using computational methods from network theory. To demonstrate this, we use 307 biochemical networks generated from genomic data collected across Earth and "seed" these networks with molecules confirmed to be present on Saturn's moon Enceladus. By expanding through known biochemical reaction space starting from these seed compounds, we are able to determine which products of Earth's biochemistry are, in principle, reachable from compounds available in the environment on Enceladus, and how this varies across different examples of life from Earth (organisms, ecosystems, planetary-scale biochemistry). While we find that none of the 307 prokaryotes analyzed meet the threshold for viability, the reaction space covered by this process can provide a map of possible targets for detection of Earth-like life on Enceladus, as well as targets for synthetic biology approaches to seed life on Enceladus. In cases where biochemistry is not viable because key compounds are missing, we identify the environmental precursors required to make it viable, thus providing a set of compounds to prioritize for detection in future planetary exploration missions aimed at assessing the ability of Enceladus to sustain Earth-like life or directed panspermia.
太阳系正越来越容易通过机器人任务进行探索,以寻找生命。然而,天体生物学家目前缺乏明确的框架来定量评估这些外星环境中生命可触及的化学空间。这些框架对于制定未来任务规划所需的具体预测至关重要,这些预测既可以确定其他星球上生命的潜在生存能力,也可以预测生命可能产生的分子生物特征。在这里,我们描述了如何将现有的方法结合起来,为研究跨不同行星环境的生化空间可及性提供一个框架。我们的方法结合了行星任务的观测数据以及从地球各地收集的基因组数据,并使用网络理论的计算方法进行分析。为了演示这一点,我们使用了从地球各地收集的基因组数据生成的 307 个生化网络,并将这些网络与已确认存在于土星卫星土卫二上的分子“种子”进行了扩展。通过从这些种子化合物开始,在已知的生化反应空间中扩展,我们能够确定地球上的生化产物中,原则上哪些是可以从土卫二环境中可用的化合物中获得的,以及这在地球生命的不同例子(生物体、生态系统、行星规模的生化)中是如何变化的。虽然我们发现分析的 307 个原核生物中没有一个达到生存的阈值,但这个过程所涵盖的反应空间可以为在土卫二上探测类似地球的生命提供一个可能目标的地图,也可以为在土卫二上播种生命的合成生物学方法提供目标。在某些情况下,如果没有关键化合物,生物化学是不可行的,我们会确定使其可行所需的环境前体,从而提供一组化合物,以便在未来旨在评估土卫二维持类似地球生命的能力或定向泛种论的行星探索任务中优先检测。