Huang Tian, Li Bo, Wang Huan, Granick Steve
Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea.
College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China.
ACS Nano. 2021 Sep 28;15(9):14947-14953. doi: 10.1021/acsnano.1c05168. Epub 2021 Sep 15.
The intellectual community focused on nanomotors has recently become interested in extending these concepts to individual molecules. Here, we study a chemical reaction according to whose mechanism some intermediate species should speed up while others slow down in predictable ways, if the nanomotor hypothesis of boosted diffusion holds. Accordingly, we scrutinize the absolute diffusion coefficient () during intermediate steps of the catalytic cycle for the CuAAC reaction (copper-catalyzed azide-alkyne cycloaddition click reaction), using proton pulsed field-gradient nuclear magnetic resonance to discriminate between the diffusion of various reaction intermediates. We observe time-dependent diffusion that is enhanced for some intermediate molecular species and depressed for those whose size increases owing to complex formation. These findings point to the failure of the conventional Stokes-Einstein equation to fully explain diffusivity during chemical reaction. Without attempting a firm explanation, this paper highlights aspects of the physics of chemical reactions that are imperfectly understood and presents systematic data that can be used to assess hypotheses.
专注于纳米马达的学术群体最近开始对将这些概念扩展到单个分子感兴趣。在此,我们研究一种化学反应,如果增强扩散的纳米马达假说是成立的,那么根据其反应机理,一些中间物种的扩散速度应该会加快,而另一些则会以可预测的方式减慢。因此,我们使用质子脉冲场梯度核磁共振来区分各种反应中间体的扩散,仔细研究了铜催化的叠氮化物-炔烃环加成点击反应(CuAAC反应)催化循环中间步骤的绝对扩散系数()。我们观察到随时间变化的扩散现象,一些中间分子物种的扩散增强,而那些因形成复合物导致尺寸增加的物种的扩散则受到抑制。这些发现表明,传统的斯托克斯-爱因斯坦方程无法完全解释化学反应过程中的扩散率。本文在未尝试给出确切解释的情况下,突出了化学反应物理过程中尚未被完全理解的方面,并提供了可用于评估各种假说的系统数据。