Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg , Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
Acc Chem Res. 2017 Oct 17;50(10):2610-2620. doi: 10.1021/acs.accounts.7b00371. Epub 2017 Sep 11.
Click chemistry has emerged as a significant tool for materials science, organic chemistry, and bioscience. Based on the initial concept of Barry Sharpless in 2001, the copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction has triggered a plethora of chemical concepts for linking molecules and building blocks under ambient conditions, forming the basis for applications in autonomous cross-linking materials. Self-healing systems on the other hand are often based on mild cross-linking chemistries that are able to react either autonomously or upon an external trigger. In the ideal case, self-healing takes place efficiently at low temperatures, independent of the substrate(s) used, by forming strong and stable networks, binding to the newly generated (cracked) interfaces to restore the original material properties. The use of the CuAAC in self-healing systems, most of all the careful design of copper-based catalysts linked to additives as well as the chemical diversity of substrates, has led to an enormous potential of applications of this singular reaction. The implementation of click-based strategies in self-healing systems therefore is highly attractive, as here chemical (and physical) concepts of molecular reactivity, molecular design, and even metal catalysis are connected to aspects of materials science. In this Account, we will show how CuAAC reactions of multivalent components can be used as a tool for self-healing materials, achieving cross-linking at low temperatures (exploiting concepts of autocatalysis or internal chelation within the bulk CuAAC and systematic optimization of the efficiency of the used Cu(I) catalysts). Encapsulation strategies to separate the click components by micro- and nanoencapsulation are required in this context. Consequently, the examples reported here describe chemical concepts to realize more efficient and faster click reactions in self-healing polymeric materials. Thus, enhanced chain diffusion in (hyper)branched polymers, autocatalysis, or internal chelation concepts enable efficient click cross-linking already at 5 °C with a simultaneously reduced amount of Cu(I) catalyst and increased reaction rates, culminating in the first reported self-healing system based on click cycloaddition reactions. Via tailor-made nanocarbon/Cu(I) catalysts we can further improve the click cross-linking reaction in view of efficiency and kinetics, leading to the generation of self-healing graphene-based epoxy nanocomposites. Additionally, we have designed special CuAAC click methods for chemical reporting and visualization systems based on the detection of ruptured capsules via a fluorogenic click reaction, which can be combined with CuAAC cross-linking reactions to obtain simultaneous stress detection and self-healing within polymeric materials. In a similar concept, we have prepared polymeric Cu(I)-biscarbene complexes to detect (mechanical) stress within self-healing polymeric materials via a triggered fluorogenic reaction, thus using a destructive force for a constructive chemical response.
点击化学已成为材料科学、有机化学和生物科学的重要工具。基于 2001 年 Barry Sharpless 的最初概念,铜(I)催化的叠氮化物/炔烃环加成(CuAAC)反应引发了大量用于在环境条件下连接分子和构建块的化学概念,为自主交联材料的应用奠定了基础。另一方面,自修复系统通常基于能够在自主或外部触发下反应的温和交联化学。在理想情况下,自修复在低温下高效进行,独立于所使用的基底,形成强而稳定的网络,与新生成的(裂纹)界面结合,恢复原始材料性能。CuAAC 在自修复系统中的应用,尤其是与添加剂结合的铜基催化剂的精心设计以及底物的化学多样性,为这一独特反应的应用带来了巨大的潜力。因此,点击基策略在自修复系统中的实施极具吸引力,因为在这里,分子反应性、分子设计甚至金属催化的化学和物理概念与材料科学的各个方面联系在一起。在本报告中,我们将展示多价组分的 CuAAC 反应如何可用作自修复材料的工具,实现低温交联(利用本体 CuAAC 中的自催化或内部螯合以及所用 Cu(I)催化剂效率的系统优化的概念)。在这种情况下,需要通过微封装和纳米封装将点击组件分开的封装策略。因此,这里报道的例子描述了实现自修复聚合物材料中更高效和更快点击反应的化学概念。因此,在(超)支化聚合物中增强链扩散、自催化或内部螯合概念使已经在 5°C 下能够实现有效的点击交联,同时减少 Cu(I)催化剂的用量并提高反应速率,最终在第一个报道的基于点击环加成反应的自修复系统中达到这一目标。通过定制的纳米碳/Cu(I)催化剂,我们可以进一步提高点击交联反应的效率和动力学,生成基于点击的自修复石墨烯基环氧树脂纳米复合材料。此外,我们还设计了用于化学报告和可视化系统的特殊 CuAAC 点击方法,该方法基于通过荧光点击反应检测破裂的胶囊,可与 CuAAC 交联反应相结合,在聚合物材料中获得同时的应力检测和自修复。在类似的概念中,我们制备了聚合物 Cu(I)-双卡宾络合物,以通过触发的荧光反应检测自修复聚合物材料中的(机械)应力,从而利用破坏性力产生建设性的化学响应。