Suppr超能文献

新型木质素降解漆酶 LacZ1 的分离与鉴定。

Isolation and Characterization of a Novel Laccase for Lignin Degradation, LacZ1.

机构信息

Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural Universitygrid.412064.5, Daqing, People's Republic of China.

State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

出版信息

Appl Environ Microbiol. 2021 Nov 10;87(23):e0135521. doi: 10.1128/AEM.01355-21. Epub 2021 Sep 15.

Abstract

Lignin is a complex natural organic polymer and is one of the primary components of lignocellulose. The efficient utilization of lignocellulose is limited because it is difficult to degrade lignin. In this study, we screened a gene fragment encoding laccase from the macrotranscriptome data of a microbial consortium WSC-6, which can efficiently degrade lignocellulose. The reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that the expression level of the gene during the peak period of lignocellulose degradation by WSC-6 increased by 30.63 times compared to the initial degradation period. Phylogenetic tree analysis demonstrated that the complete gene is derived from a sp. and encoded laccase. The corresponding protein, LacZ1, was expressed and purified by Ni-chelating affinity chromatography. The optimum temperature was 75°C, the optimum pH was 4.5, and the highest enzyme activity reached 16.39 U/mg. We found that Cu was an important cofactor needed for LacZ1 to have enzyme activity. The molecular weight distribution of lignin was determined by gel permeation chromatography (GPC), and changes in the lignin structure were determined by H nuclear magnetic resonance (H NMR) spectra. The degradation products of lignin by LacZ1 were determined by gas chromatography and mass spectrometry (GC-MS), and three lignin degradation pathways (the gentian acid pathway, benzoic acid pathway, and protocatechuic acid pathway) were proposed. This study provides insight into the degradation of lignin and new insights into high-temperature bacterial laccase. Lignin is a natural aromatic polymer that is not easily degraded, hindering the efficient use of lignocellulose-rich biomass resources, such as straw. Biodegradation is a method of decomposing lignin that has recently received increasing attention. In this study, we screened a gene encoding laccase from the lignocellulose-degrading microbial consortium WSC-6, purified the corresponding protein LacZ1, characterized the enzymatic properties of laccase LacZ1, and speculated that the degradation pathway of LacZ1 degrades lignin. This study identified a new, high-temperature bacterial laccase that can degrade lignin, providing insight into lignin degradation by this laccase.

摘要

木质素是一种复杂的天然有机聚合物,是木质纤维素的主要成分之一。由于木质素难以降解,木质纤维素的有效利用受到限制。在这项研究中,我们从微生物联合体 WSC-6 的宏转录组数据中筛选了一段编码漆酶的基因片段,该联合体可以有效地降解木质纤维素。反转录定量 PCR(RT-qPCR)结果表明,与初始降解期相比,WSC-6 降解木质纤维素高峰期时该基因的表达水平增加了 30.63 倍。系统发育树分析表明,完整的 基因来源于 sp.,并编码漆酶。通过镍螯合亲和层析表达和纯化了相应的蛋白质 LacZ1。最适温度为 75°C,最适 pH 值为 4.5,最高酶活达到 16.39 U/mg。我们发现 Cu 是 LacZ1 具有酶活性所必需的重要辅因子。通过凝胶渗透色谱(GPC)测定木质素的分子量分布,通过 H 核磁共振(H NMR)谱测定木质素结构的变化。通过气相色谱和质谱(GC-MS)测定 LacZ1 对木质素的降解产物,提出了三种木质素降解途径(龙胆酸途径、苯甲酸途径和原儿茶酸途径)。本研究为木质素的降解提供了新的见解,并为高温细菌漆酶提供了新的见解。木质素是一种天然芳香聚合物,不易降解,阻碍了富含木质纤维素的生物质资源(如秸秆)的有效利用。生物降解是一种最近受到越来越多关注的分解木质素的方法。在这项研究中,我们从木质纤维素降解微生物联合体 WSC-6 中筛选了一个编码漆酶的基因,纯化了相应的蛋白质 LacZ1,表征了漆酶 LacZ1 的酶学特性,并推测 LacZ1 的降解途径降解木质素。本研究鉴定了一种新的高温细菌漆酶,能够降解木质素,为该漆酶降解木质素提供了新的见解。

相似文献

1
Isolation and Characterization of a Novel Laccase for Lignin Degradation, LacZ1.新型木质素降解漆酶 LacZ1 的分离与鉴定。
Appl Environ Microbiol. 2021 Nov 10;87(23):e0135521. doi: 10.1128/AEM.01355-21. Epub 2021 Sep 15.
3
Lignin degradation by a novel thermophilic and alkaline yellow laccase from sp.新型嗜热碱性黄漆酶降解木质素
Microbiol Spectr. 2024 Jun 4;12(6):e0401323. doi: 10.1128/spectrum.04013-23. Epub 2024 May 7.

引用本文的文献

本文引用的文献

10
Advances in microbial lignin degradation and its applications.微生物木质素降解及其应用的研究进展。
Curr Opin Biotechnol. 2019 Apr;56:179-186. doi: 10.1016/j.copbio.2018.11.011. Epub 2018 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验