Izvekov Sergei
Weapons and Materials Research Directorate, U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA.
Phys Rev E. 2021 Aug;104(2-1):024121. doi: 10.1103/PhysRevE.104.024121.
We present a generalized Langevin equation (GLE) of motion that governs exactly the time evolution of phase-space observables in finite open systems described by classical Hamiltonians with explicitly time-dependent potentials. This formalism is based on the Mori-Zwanzig projection operator (PO) method with a time-independent Zwanzig PO within a Heisenberg (Lagrangian) picture and reduced description of Hamiltonian systems in terms of canonical relevant and irrelevant coordinates. We demonstrate that, similarly to closed systems, GLE dynamics in Hamiltonian systems in the presence of time-dependent potentials is determined by conservative, dissipative memory, and projected force fields, and that the memory functions relate to the projected force, which is a two-time process, in a way that is reminiscent of the equilibrium second fluctuation-dissipation relation. We further show that, in the most general case, the memory kernel depends on the relevant momentum gradients of the (Boltzmann) entropy of the irrelevant subsystem. Using two Zwanzig operators which are, respectively, functionals of the canonical and generalized canonical probability densities, we then derive what we call canonical and generalized canonical GLEs. Further, we can formulate the particle-based, coarse-grained (CG) GLE dynamics by transitioning to Jacobi coordinates which corresponds to a particle set partitioning of the Hamiltonian system. The obtained canonical CG GLE of motion for the relevant momenta is a generalization of the CG equation of motion known for closed systems. Also, using a Markovian approximation of the canonical CG GLE, we can extend the dissipative particle dynamics equation to open systems. A distinctive feature of our extension is a use of explicitly time-dependent frictions, which reflect the changes in the dissipation rate caused by time-dependent coupling to an external bath. Our GLE formalism and workflow constitute a general and viable framework that can be readily used as a starting point to rigorously formulate microscopically informed CG treatments for a variety of phenomena in externally forced systems far from equilibrium.
我们提出了一个广义朗之万运动方程(GLE),它精确地描述了由具有显式含时势的经典哈密顿量所描述的有限开放系统中相空间可观测量的时间演化。这种形式体系基于Mori-Zwanzig投影算符(PO)方法,在海森堡(拉格朗日)图景中使用与时间无关的Zwanzig PO,并根据正则相关和无关坐标对哈密顿系统进行约化描述。我们证明,与封闭系统类似,在存在含时势的哈密顿系统中,GLE动力学由保守力、耗散记忆和投影力场决定,并且记忆函数与投影力相关,这是一个双时过程,其方式让人联想到平衡态下的第二个涨落-耗散关系。我们进一步表明,在最一般的情况下,记忆核取决于无关子系统(玻尔兹曼)熵的相关动量梯度。然后,使用分别是正则和广义正则概率密度泛函的两个Zwanzig算符,我们推导出了我们所谓的正则和广义正则GLE。此外,通过转换到对应于哈密顿系统粒子集划分的雅可比坐标,我们可以构建基于粒子的粗粒化(CG)GLE动力学。所得到的关于相关动量的正则CG GLE运动方程是封闭系统中已知的CG运动方程的推广。同样,使用正则CG GLE的马尔可夫近似,我们可以将耗散粒子动力学方程扩展到开放系统。我们扩展的一个显著特征是使用显式含时的摩擦力,它反映了由于与外部浴的含时耦合而导致的耗散率变化。我们的GLE形式体系和工作流程构成了一个通用且可行的框架,可轻易用作一个起点,以严格地为远离平衡的外部强迫系统中的各种现象制定微观信息丰富的CG处理方法。