Suppr超能文献

前庭神经鞘瘤治疗决策:基于机器学习分析的预测。

Decision making on vestibular schwannoma treatment: predictions based on machine-learning analysis.

机构信息

Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.

Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslávských partyzánů 1580/3, 160 00, Prague 6, Czech Republic.

出版信息

Sci Rep. 2021 Sep 15;11(1):18376. doi: 10.1038/s41598-021-97819-x.

Abstract

Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, tumor size, patient's preference, and experience of the medical team. Here we provide objective tools to support the decision process by answering two questions: can a single checkup predict the need of active treatment?, and which attributes of VS development are important in decision making on active treatment? Using a machine-learning analysis of medical records of 93 patients, the objectives were addressed using two classification tasks: a time-independent case-based reasoning (CBR), where each medical record was treated as independent, and a personalized dynamic analysis (PDA), during which we analyzed the individual development of each patient's state in time. Using the CBR method we found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, collectively predict the need for active treatment with approximately 90% accuracy; in the PDA task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS treatment may be reliably predicted using only a small set of basic parameters, even without the knowledge of individual development, which may help to simplify VS treatment strategies, reduce the number of examinations, and increase cause effectiveness.

摘要

治疗前庭神经鞘瘤(VS)的决策主要基于症状、肿瘤大小、患者偏好和医疗团队的经验。在这里,我们提供客观的工具来通过回答两个问题来支持决策过程:单次检查能否预测是否需要积极治疗?以及 VS 发展的哪些特征在积极治疗决策中很重要?使用机器学习对 93 名患者的病历进行分析,通过两种分类任务来实现目标:一种是基于案例的独立时间推理(CBR),其中每个病历都被视为独立的;另一种是个性化动态分析(PDA),在此期间,我们分析了每个患者状态的个体发展。使用 CBR 方法,我们发现 Koos 肿瘤大小分类、语音接受阈值和纯音测听,综合起来可以预测积极治疗的需求,准确率约为 90%;在 PDA 任务中,只有 Koos 分类和 VS 大小的增加是足够的。我们的结果表明,即使不了解个体发展情况,仅使用一小部分基本参数也可以可靠地预测 VS 的治疗,这可能有助于简化 VS 的治疗策略,减少检查次数,并提高疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb5/8443556/6a7f276ea152/41598_2021_97819_Fig1_HTML.jpg

相似文献

引用本文的文献

本文引用的文献

4
An update on the diagnosis and treatment of vestibular schwannoma.前庭神经鞘瘤的诊断和治疗进展。
Expert Rev Neurother. 2018 Jan;18(1):29-39. doi: 10.1080/14737175.2018.1399795. Epub 2017 Nov 7.
7
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
10
Complications of microsurgery of vestibular schwannoma.前庭神经鞘瘤显微手术的并发症
Biomed Res Int. 2014;2014:315952. doi: 10.1155/2014/315952. Epub 2014 May 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验