Suppr超能文献

基于特定个体、空间缩减和理想化边界条件对小鼠主动脉内血流动力学环境预测的影响。

Effect of Subject-Specific, Spatially Reduced, and Idealized Boundary Conditions on the Predicted Hemodynamic Environment in the Murine Aorta.

机构信息

Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, SMBB, Rm. 3100, Salt Lake City, UT, 84112, USA.

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 84112, USA.

出版信息

Ann Biomed Eng. 2021 Dec;49(12):3255-3266. doi: 10.1007/s10439-021-02851-7. Epub 2021 Sep 15.

Abstract

Mouse models of atherosclerosis have become effective resources to study atherogenesis, including the relationship between hemodynamics and lesion development. Computational methods aid the prediction of the in vivo hemodynamic environment in the mouse vasculature, but careful selection of inflow and outflow boundary conditions (BCs) is warranted to promote model accuracy. Herein, we investigated the impact of animal-specific versus reduced/idealized flow boundary conditions on predicted blood flow patterns in the mouse thoracic aorta. Blood velocities were measured in the aortic root, arch branch vessel, and descending aorta in ApoE mice using phase-contrast MRI. Computational geometries were derived from micro-CT imaging and combinations of high-fidelity or reduced/idealized MR-derived BCs were applied to predict the bulk flow field and hemodynamic metrics (e.g., wall shear stress, WSS; cross-flow index, CFI). Results demonstrate that pressure-free outlet BCs significantly overestimate outlet flow rates as compared to measured values. When compared to models that incorporate 3-component inlet velocity data [[Formula: see text]] and time-varying outlet mass flow splits [[Formula: see text]] (i.e., high-fidelity model), neglecting in-plane inlet velocity components (i.e., [Formula: see text])) leads to errors in WSS and CFI values ranging from 10 to 30% across the model domain whereas the application of a steady outlet mass flow splits results in negligible differences in these hemodynamics metrics. This investigation highlights that 3-component inlet velocity data and at least steady mass flow splits are required for accurate predictions of flow patterns in the mouse thoracic aorta.

摘要

动脉粥样硬化的小鼠模型已成为研究动脉粥样硬化形成的有效资源,包括血流动力学与病变发展之间的关系。计算方法有助于预测小鼠血管中的体内血流环境,但需要仔细选择流入和流出边界条件(BC),以提高模型的准确性。在此,我们研究了特定于动物的边界条件与简化/理想化的边界条件对预测小鼠胸主动脉血流模式的影响。我们使用相位对比 MRI 测量 ApoE 小鼠主动脉根部、弓分支血管和降主动脉的血流速度。从微 CT 成像中得出计算几何形状,并应用高保真或简化/理想化的 MR 衍生 BC 的组合来预测整体流场和血流动力学指标(例如壁面切应力,WSS;交叉流指数,CFI)。结果表明,与实测值相比,无压出口边界条件显著高估了出口流量。与包含 3 分量入口速度数据 [[Formula: see text]] 和时变出口质量流量分配 [[Formula: see text]](即高保真模型)的模型相比,忽略平面内入口速度分量 [[Formula: see text]])导致 WSS 和 CFI 值在模型域内的误差范围为 10%至 30%,而稳态出口质量流量分配的应用则导致这些血流动力学指标的差异可以忽略不计。这项研究强调,需要 3 分量入口速度数据和至少稳定的质量流量分配,才能准确预测小鼠胸主动脉的血流模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验