Suppr超能文献

工具变量法估计区间截断数据下的遵从性因果处理效应。

Instrumental variable estimation of complier causal treatment effect with interval-censored data.

机构信息

School of Economics, and Statistics, Guangzhou University, Guangzhou, Guangdong, China.

Department of Biostatistics, and Bioinformatics, Emory University, Atlanta, Georgia.

出版信息

Biometrics. 2023 Mar;79(1):253-263. doi: 10.1111/biom.13565. Epub 2021 Oct 12.

Abstract

Assessing causal treatment effect on a time-to-event outcome is of key interest in many scientific investigations. Instrumental variable (IV) is a useful tool to mitigate the impact of endogenous treatment selection to attain unbiased estimation of causal treatment effect. Existing development of IV methodology, however, has not attended to outcomes subject to interval censoring, which are ubiquitously present in studies with intermittent follow-up but are challenging to handle in terms of both theory and computation. In this work, we fill in this important gap by studying a general class of causal semiparametric transformation models with interval-censored data. We propose a nonparametric maximum likelihood estimator of the complier causal treatment effect. Moreover, we design a reliable and computationally stable expectation-maximization (EM) algorithm, which has a tractable objective function in the maximization step via the use of Poisson latent variables. The asymptotic properties of the proposed estimators, including the consistency, asymptotic normality, and semiparametric efficiency, are established with empirical process techniques. We conduct extensive simulation studies and an application to a colorectal cancer screening data set, showing satisfactory finite-sample performance of the proposed method as well as its prominent advantages over naive methods.

摘要

评估事件时间结局的因果治疗效果是许多科学研究的关键关注点。工具变量 (IV) 是一种有用的工具,可以减轻内源性治疗选择的影响,从而实现因果治疗效果的无偏估计。然而,现有的 IV 方法学发展并没有关注到受到区间 censoring 影响的结局,这些结局普遍存在于具有间歇性随访的研究中,但在理论和计算方面都具有挑战性。在这项工作中,我们通过研究具有区间 censored 数据的一类因果半参数变换模型来填补这一重要空白。我们提出了一种非参数极大似然估计量,用于估计依从性因果治疗效果。此外,我们设计了一种可靠且计算稳定的期望最大化 (EM) 算法,该算法在最大化步骤中通过使用泊松潜在变量来处理可处理的目标函数。所提出的估计量的渐近性质,包括一致性、渐近正态性和半参数效率,都是通过经验过程技术建立的。我们进行了广泛的模拟研究和对结直肠癌筛查数据集的应用,结果表明,所提出的方法在有限样本中的表现令人满意,并且与简单方法相比具有明显的优势。

相似文献

本文引用的文献

3
9
Instrumental variable methods for causal inference.工具变量法在因果推断中的应用。
Stat Med. 2014 Jun 15;33(13):2297-340. doi: 10.1002/sim.6128. Epub 2014 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验