Li Shuli, Gray Robert J
Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, U.S.A..
Biometrics. 2016 Sep;72(3):742-50. doi: 10.1111/biom.12472. Epub 2016 Jan 22.
We consider methods for estimating the treatment effect and/or the covariate by treatment interaction effect in a randomized clinical trial under noncompliance with time-to-event outcome. As in Cuzick et al. (2007), assuming that the patient population consists of three (possibly latent) subgroups based on treatment preference: the ambivalent group, the insisters, and the refusers, we estimate the effects among the ambivalent group. The parameters have causal interpretations under standard assumptions. The article contains two main contributions. First, we propose a weighted per-protocol (Wtd PP) estimator through incorporating time-varying weights in a proportional hazards model. In the second part of the article, under the model considered in Cuzick et al. (2007), we propose an EM algorithm to maximize a full likelihood (FL) as well as the pseudo likelihood (PL) considered in Cuzick et al. (2007). The E step of the algorithm involves computing the conditional expectation of a linear function of the latent membership, and the main advantage of the EM algorithm is that the risk parameters can be updated by fitting a weighted Cox model using standard software and the baseline hazard can be updated using closed-form solutions. Simulations show that the EM algorithm is computationally much more efficient than directly maximizing the observed likelihood. The main advantage of the Wtd PP approach is that it is more robust to model misspecifications among the insisters and refusers since the outcome model does not impose distributional assumptions among these two groups.
我们考虑在存在不依从且有事件发生时间结局的随机临床试验中,估计治疗效果和/或治疗与协变量交互作用效果的方法。与库齐克等人(2007年)的研究一样,假设患者群体基于治疗偏好由三个(可能是潜在的)亚组组成:矛盾组、坚持组和拒绝组,我们估计矛盾组中的效果。在标准假设下,这些参数具有因果解释。本文有两个主要贡献。首先,我们通过在比例风险模型中纳入随时间变化的权重,提出了一种加权符合方案(Wtd PP)估计器。在本文的第二部分,在库齐克等人(2007年)所考虑的模型下,我们提出了一种期望最大化(EM)算法,以最大化完全似然(FL)以及库齐克等人(2007年)所考虑的拟似然(PL)。该算法的E步涉及计算潜在成员线性函数的条件期望,EM算法的主要优点是风险参数可以通过使用标准软件拟合加权Cox模型来更新,并且基线风险可以使用封闭形式的解来更新。模拟表明,EM算法在计算上比直接最大化观察到的似然要高效得多。Wtd PP方法的主要优点是,由于结局模型不对坚持组和拒绝组之间的分布做假设,所以它对这两组中的模型误设更具稳健性。