Suppr超能文献

使用二元工具变量和删失数据估计因果分位数效应

Estimation of causal quantile effects with a binary instrumental variable and censored data.

作者信息

Wei Bo, Peng Limin, Zhang Mei-Jie, Fine Jason P

机构信息

Department of Biostatistics and Bioinformatics, Emory University, Atlanta, USA.

Department of Biostatistics, Medical College of Wisconsin.

出版信息

J R Stat Soc Series B Stat Methodol. 2021 Jul;83(3):559-578. doi: 10.1111/rssb.12431. Epub 2021 Jul 1.

Abstract

The causal effect of a treatment is of fundamental interest in the social, biological, and health sciences. Instrumental variable (IV) methods are commonly used to determine causal treatment effects in the presence of unmeasured confounding. In this work, we study a new binary IV framework with randomly censored outcomes where we propose to quantify the causal treatment effect by the concept of complier quantile causal effect (CQCE). The CQCE is identifiable under weaker conditions than the complier average causal effect when outcomes are subject to censoring, and it can provide useful insight into the dynamics of the causal treatment effect. Employing the special characteristic of the binary IV and adapting the principle of conditional score, we uncover a simple weighting scheme that can be incorporated into the standard censored quantile regression procedure to estimate CQCE. We develop robust nonparametric estimation of the derived weights in the first stage, which permits stable implementation of the second stage estimation based on existing software. We establish rigorous asymptotic properties for the proposed estimator, and confirm its validity and satisfactory finite-sample performance via extensive simulations. The proposed method is applied to a bone marrow transplant dataset to evaluate the causal effect of rituximab in diffuse large B-cell lymphoma patients.

摘要

治疗的因果效应在社会科学、生物科学和健康科学中具有根本重要性。在存在未测量混杂因素的情况下,工具变量(IV)方法通常用于确定因果治疗效应。在这项工作中,我们研究了一种新的具有随机删失结果的二元IV框架,在此框架下我们建议通过依从者分位数因果效应(CQCE)的概念来量化因果治疗效应。当结果受到删失时,CQCE在比依从者平均因果效应更弱的条件下是可识别的,并且它可以为因果治疗效应的动态变化提供有用的见解。利用二元IV的特殊特性并采用条件得分原理,我们发现了一种简单的加权方案,该方案可以纳入标准的删失分位数回归程序中来估计CQCE。我们在第一阶段对导出的权重进行稳健的非参数估计,这使得基于现有软件能够稳定地实施第二阶段的估计。我们为所提出的估计量建立了严格的渐近性质,并通过广泛的模拟证实了其有效性和令人满意的有限样本性能。所提出的方法应用于一个骨髓移植数据集,以评估利妥昔单抗对弥漫性大B细胞淋巴瘤患者的因果效应。

相似文献

1
Estimation of causal quantile effects with a binary instrumental variable and censored data.
J R Stat Soc Series B Stat Methodol. 2021 Jul;83(3):559-578. doi: 10.1111/rssb.12431. Epub 2021 Jul 1.
2
Instrumental variable estimation of complier causal treatment effect with interval-censored data.
Biometrics. 2023 Mar;79(1):253-263. doi: 10.1111/biom.13565. Epub 2021 Oct 12.
3
Causal Proportional Hazards Estimation with a Binary Instrumental Variable.
Stat Sin. 2021 Apr;31(2):673-699. doi: 10.5705/ss.202019.0096.
4
Doubly robust nonparametric instrumental variable estimators for survival outcomes.
Biostatistics. 2023 Apr 14;24(2):518-537. doi: 10.1093/biostatistics/kxab036.
5
Instrumental variable estimation of the causal hazard ratio.
Biometrics. 2023 Jun;79(2):539-550. doi: 10.1111/biom.13792. Epub 2022 Nov 28.
6
Nonparametric inference of complier quantile treatment effects in randomized trials with imperfect compliance.
Biostat Epidemiol. 2022;6(2):249-265. doi: 10.1080/24709360.2021.2024972. Epub 2022 Feb 27.
7
Quantile Regression Adjusting for Dependent Censoring from Semi-Competing Risks.
J R Stat Soc Series B Stat Methodol. 2015 Jan;77(1):107-130. doi: 10.1111/rssb.12063.
9
A nonparametric instrumental approach to confounding in competing risks models.
Lifetime Data Anal. 2023 Oct;29(4):709-734. doi: 10.1007/s10985-023-09599-3. Epub 2023 May 9.
10
Estimating the quantile medical cost under time-dependent covariates and right censored time-to-event variable based on a state process.
Stat Methods Med Res. 2020 Aug;29(8):2041-2062. doi: 10.1177/0962280219882968. Epub 2019 Oct 23.

引用本文的文献

1
Exploring interspecific interaction variability in microbiota: A review.
Eng Microbiol. 2024 Nov 9;4(4):100178. doi: 10.1016/j.engmic.2024.100178. eCollection 2024 Dec.

本文引用的文献

1
Causal Proportional Hazards Estimation with a Binary Instrumental Variable.
Stat Sin. 2021 Apr;31(2):673-699. doi: 10.5705/ss.202019.0096.
2
A semiparametric linear transformation model to estimate causal effects for survival data.
Can J Stat. 2014 Mar;42(1):18-35. doi: 10.1002/cjs.11198. Epub 2013 Nov 14.
3
Instrumental variable with competing risk model.
Stat Med. 2017 Apr 15;36(8):1240-1255. doi: 10.1002/sim.7205. Epub 2017 Jan 8.
4
Generalizing Quantile Regression for Counting Processes with Applications to Recurrent Events.
J Am Stat Assoc. 2016;111(513):145-156. doi: 10.1080/01621459.2014.995795. Epub 2016 May 5.
6
Semiparametric transformation models for causal inference in time to event studies with all-or-nothing compliance.
J R Stat Soc Series B Stat Methodol. 2015 Mar 1;77(2):397-415. doi: 10.1111/rssb.12072.
7
Instrumental variable methods for causal inference.
Stat Med. 2014 Jun 15;33(13):2297-340. doi: 10.1002/sim.6128. Epub 2014 Mar 6.
8
Inference for the effect of treatment on survival probability in randomized trials with noncompliance and administrative censoring.
Biometrics. 2011 Dec;67(4):1397-405. doi: 10.1111/j.1541-0420.2011.01575.x. Epub 2011 Mar 8.
9
Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models.
J Am Stat Assoc. 2008 Jun 1;103(482):672-680. doi: 10.1198/016214508000000184.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验