Suppr超能文献

代谢组学和转录组学为紫色小麦( L.)发育籽粒中花色苷生物合成提供了新见解。

Metabolomics and Transcriptomics Provide Insights into Anthocyanin Biosynthesis in the Developing Grains of Purple Wheat ( L.).

机构信息

Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.

Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.

出版信息

J Agric Food Chem. 2021 Sep 29;69(38):11171-11184. doi: 10.1021/acs.jafc.1c01719. Epub 2021 Sep 16.

Abstract

Purple wheat is thought to have beneficial effects on humans owing to its high anthocyanin content. However, a systematic understanding of the anthocyanin biosynthesis process in developing wheat grain is lacking. Here, the dynamic changes in anthocyanin components and transcripts in the grain of purple wheat ZNM168 at five developmental stages (10, 15, 20, 25, and 30 DAF) were characterized. Compared with other anthocyanins, four components, cyanidin 3--rutinoside, cyanidin 3--glucoside, cyanidin 3,5--diglucoside, and malvidin 3--glucoside, were significantly accumulated with grain development. In particular, the considerable accumulation of cyanidin 3--rutinoside indicated that it was the pivotal pigment for the purple grain. Transcriptome analysis revealed that the nine differentially expressed genes related to anthocyanin biosynthesis belonged to the group, the homologous enzyme encoded by the maize - locus, which may primarily serve to glucosylate anthocyanidins. By constructing a gene coexpression network based on weighted gene coexpression network analysis, the UniGene () was predicted as a core gene in anthocyanin biosynthesis. In addition, correlation analysis between the metabolites and transcripts suggested that () and () were considered critical structural genes in the anthocyanin biosynthesis pathway. This study provides insights to exploit genes pinpointed as genetic engineering targets, thereby breeding anthocyanin-enriched wheat.

摘要

紫麦因其富含花色苷而被认为对人体有益。然而,人们对发育中的小麦籽粒中花色苷生物合成过程的系统认识还很缺乏。在这里,对紫色小麦 ZNM168 在五个发育阶段(10、15、20、25 和 30 DAF)的籽粒中花色苷成分和转录物的动态变化进行了表征。与其他花色苷相比,四种成分,矢车菊素 3--芸香糖苷、矢车菊素 3--葡萄糖苷、矢车菊素 3,5--二葡萄糖苷和锦葵素 3--葡萄糖苷,随着籽粒的发育而显著积累。特别是矢车菊素 3--芸香糖苷的大量积累表明它是紫色籽粒的关键色素。转录组分析表明,与花色苷生物合成相关的 9 个差异表达基因属于 组,玉米 - 基因座编码的同源酶可能主要负责花色苷的葡萄糖基化。通过基于加权基因共表达网络分析构建基因共表达网络,预测 UniGene () 为花色苷生物合成的核心基因。此外,代谢物与转录物之间的相关性分析表明, () 和 () 被认为是花色苷生物合成途径中的关键结构基因。本研究为开发作为遗传工程靶点的基因提供了思路,从而培育出富含花色苷的小麦。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验