Suppr超能文献

动力皮肤——一种受生物启发的设计方法,用于开发交互式软体机器人外骨骼。

MotorSkins-a bio-inspired design approach towards an interactive soft-robotic exosuit.

机构信息

MotorSkins, Motionlab, Bouchéstraße 12, Halle20, Berlin, Berlin 12435, Germany.

Max Planck Institute of Colloids and Interfaces, Biomaterials Department, Potsdam, Germany.

出版信息

Bioinspir Biomim. 2021 Oct 25;16(6). doi: 10.1088/1748-3190/ac2785.

Abstract

The work presents a bio-inspired design approach to a soft-robotic solution for assisting the knee-bending in users with reduced mobility in lower limbs. Exosuits and fluid-driven actuators are fabric-based devices that are gaining increasing relevance as alternatives assistive technologies that can provide simpler, more flexible solutions in comparison with the rigid exoskeletons. These devices, however, commonly require an external energy supply or a pressurized-fluid reservoir, which considerably constrain the autonomy of such solutions. In this work, we introduce an event-based energy cycle (EBEC) design concept, that can harvest, store, and release the required energy for assisting the knee-bending, in a synchronised interaction with the user and the environment, thus eliminating any need for external energy or control input. Ice-plant hydro-actuation system served as the source of inspiration to address the specific requirements of such interactive exosuit through a fluid-driven material system. Based on the EBEC design concepts and the abstracted bio-inspired principles, a series of (material and process driven) design experimentations helped to address the challenges of realising various functionalities of the harvest, storage, actuation and control instances within a closed hydraulic circuit. Sealing and defining various areas of water-tight seam made out of thermoplastic elastomers provided the base material system to program various chambers, channels, flow-check valves etc of such EBEC system. The resulting fluid-driven EBEC-skin served as a proof of concept for such active exosuit, that brings these functionalities into an integrated 'sense-acting' material system, realising an auto-synchronised energy and information cycles. The proposed design concept can serve as a model for development of similar fluid-driven EBEC soft-machines for further applications. On the more general scheme, the work presents an interdisciplinary design-science approach to bio-inspiration and showcases how biological material solutions can be looked at from a design/designer perspective to bridge the bottom-up and top-down approach to bio-inspiration.

摘要

这项工作提出了一种基于生物启发的设计方法,用于为下肢活动能力降低的用户提供一种软机器人解决方案,以辅助膝关节弯曲。外骨骼和液力驱动执行器是基于织物的设备,它们作为替代辅助技术越来越受到关注,因为与刚性外骨骼相比,它们可以提供更简单、更灵活的解决方案。然而,这些设备通常需要外部能源供应或加压流体储液器,这大大限制了这些解决方案的自主性。在这项工作中,我们引入了一种基于事件的能量循环(EBEC)设计概念,该概念可以在与用户和环境的同步交互中,收集、存储和释放辅助膝关节弯曲所需的能量,从而消除对外部能源或控制输入的任何需求。冰草水力致动系统被用作灵感来源,通过液力驱动材料系统来满足这种交互式外骨骼的特定要求。基于 EBEC 设计概念和抽象的生物启发原理,一系列(材料和工艺驱动)设计实验有助于解决在封闭液压回路中实现各种功能(包括能量收集、存储、致动和控制实例)的挑战。由热塑性弹性体制成的密封且定义各种水密缝区域的方法为各种 EBEC 系统的腔室、通道、流量止回阀等提供了基础材料系统。由此产生的液力驱动 EBEC 皮肤作为这种主动外骨骼的概念验证,将这些功能集成到一个集成的“感知-作用”材料系统中,实现了自动同步的能量和信息循环。所提出的设计概念可以作为开发类似液力驱动 EBEC 软机器的模型,用于进一步的应用。从更广泛的意义上讲,这项工作提出了一种跨学科的设计科学方法,用于生物启发,并展示了如何从设计/设计者的角度看待生物材料解决方案,以弥合自上而下和自下而上的生物启发方法之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验