物理接口动力学改变了机器人外骨骼增强人类运动的方式:对优化可穿戴辅助设备的启示。

Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices.

作者信息

Yandell Matthew B, Quinlivan Brendan T, Popov Dmitry, Walsh Conor, Zelik Karl E

机构信息

Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 401592, Nashville, TN, 37240-1592, USA.

Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Pierce Hall, 29 Oxford Street, Cambridge, MA, 02138, USA.

出版信息

J Neuroeng Rehabil. 2017 May 18;14(1):40. doi: 10.1186/s12984-017-0247-9.

Abstract

BACKGROUND

Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power.

METHODS

Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power).

RESULTS

We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics.

CONCLUSIONS

Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.

摘要

背景

可穿戴辅助设备已显示出改善残疾人士行动能力以及增强健康人身体机能的潜力;然而,这些益处取决于设备向人类使用者有效传输能量的程度。由于生物组织和物理界面材料在负载下变形和位移时会吸收和返还能量,从而产生复杂的人机界面动力学,因此量化和理解这种能量传输具有挑战性。

方法

在此,我们引入一种新方法,利用常见的运动捕捉和力测量快速估算运动任务期间的界面能量动力学,然后应用该方法量化软机器人脚踝外骨骼套装在行走过程中如何与人体相互作用并向人体传输能量。我们将外骨骼套装末端执行器的能量(即设备的能量输出)分为增强脚踝跖屈的能量(称为增强能量)和用于界面材料及下层软组织变形和运动的能量(称为界面能量)。

结果

我们提供了经验证据,证明人机外骨骼界面如何吸收和返还能量,重塑外骨骼到人体的能量流,并产生三个关键结果:(i)在外骨骼加载期间(随着作用力增加),约55%的外骨骼末端执行器能量被界面吸收。(ii)然而,在随后的外骨骼卸载期间(随着作用力减小),大部分吸收的界面能量以粘弹性方式返还。因此,每个步幅中外骨骼末端执行器的大部分功(约75%)有助于增强脚踝跖屈。(iii)由于这些界面能量吸收和返还动力学,脚踝增强能量(和功)相对于外骨骼末端执行器能量有所延迟。

结论

我们的研究结果阐明了从辅助设备向人体传输能量过程中,人机外骨骼界面动力学的复杂性,并为改进可穿戴机器人的设计和控制提供了见解。我们得出结论,为了优化可穿戴辅助设备的性能,在整个设计和评估阶段,考虑影响能量传输进而影响人体增强益处的人机界面动力学非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c681/5437613/51b21fe311e4/12984_2017_247_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索