Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
Annu Rev Pharmacol Toxicol. 2022 Jan 6;62:551-571. doi: 10.1146/annurev-pharmtox-012221-082339. Epub 2021 Sep 16.
Chemogenetics refers to experimental systems that dynamically regulate the activity of a recombinant protein by providing or withholding the protein's specific biochemical stimulus. Chemogenetic tools permit precise dynamic control of specific signaling molecules to delineate the roles of those molecules in physiology and disease. Yeast d-amino acid oxidase (DAAO) enables chemogenetic manipulation of intracellular redox balance by generating hydrogen peroxide only in the presence of d-amino acids. Advances in biosensors have allowed the precise quantitation of these signaling molecules. The combination of chemogenetic approaches with biosensor methodologies has opened up new lines of investigation, allowing the analysis of intracellular redox pathways that modulate physiological and pathological cell responses. We anticipate that newly developed transgenic chemogenetic models will permit dynamic modulation of cellularredox balance in diverse cells and tissues and will facilitate the identification and validation of novel therapeutic targets involved in both physiological redox pathways and pathological oxidative stress.
化学生物学是指通过提供或阻断重组蛋白的特定生化刺激来动态调节其活性的实验系统。化学生物学工具可以精确地动态控制特定信号分子,以阐明这些分子在生理和疾病中的作用。酵母 D-氨基酸氧化酶(DAAO)通过仅在存在 D-氨基酸的情况下生成过氧化氢,使细胞内氧化还原平衡的化学生物学操纵成为可能。生物传感器的进步使得这些信号分子的精确定量成为可能。化学生物学方法与生物传感器方法的结合开辟了新的研究途径,使人们能够分析调节生理和病理细胞反应的细胞内氧化还原途径。我们预计,新开发的转基因化学生物学模型将允许在不同的细胞和组织中动态调节细胞氧化还原平衡,并促进参与生理氧化还原途径和病理氧化应激的新型治疗靶点的鉴定和验证。