Johnson Keith, Melchert Drew, Gianola Daniel S, Begley Matthew, Ray Tyler R
Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.
MRS Adv. 2021 Sep;6(25):636-643. doi: 10.1557/s43580-021-00090-5. Epub 2021 Jun 22.
Acoustic forces are an attractive pathway to achieve directed assembly for multi-phase materials via additive processes. Programmatic integration of microstructure and structural features during deposition offers opportunities for optimizing printed component performance. We detail recent efforts to integrate acoustic focusing with a direct-ink-write mode of printing to modulate material transport properties (e.g. conductivity). Acoustic field-assisted printing, operating under a multi-node focusing condition, supports deposition of materials with multiple focused lines in a single-pass printed line. Here, we report the demonstration of acoustic focusing in concert with diffusive self-assembly to rapidly assembly and print multiscale, mm-length colloidal solids on a timescale of seconds to minutes. These efforts support the promising capabilities of acoustic field-assisted deposition-based printing to achieve spatial control of printed microstructures with deterministic, long-range ordering across multiple length scales.
声学力是通过增材制造工艺实现多相材料定向组装的一条有吸引力的途径。在沉积过程中对微观结构和结构特征进行程序化整合,为优化打印部件性能提供了机会。我们详细介绍了最近将声聚焦与直接墨水写入打印模式相结合以调节材料传输特性(例如导电性)的努力。在多节点聚焦条件下运行的声场辅助打印,支持在单道打印线上沉积具有多条聚焦线的材料。在此,我们报告了声聚焦与扩散自组装协同作用的演示,即在几秒到几分钟的时间尺度内快速组装和打印毫米级长度的多尺度胶体固体。这些努力支持了基于声场辅助沉积的打印具有实现打印微观结构空间控制的有前景的能力,能够在多个长度尺度上实现确定性的、远距离有序排列。