Suppr超能文献

无烧结低温处理3D纳米打印玻璃的几何决定因素

Geometric determinants of sinterless, low-temperature-processed 3D-nanoprinted glass.

作者信息

Colton Adira, Halli Ryan N, Ma M Rho, Nori Tejaswi, Muller Lucas K, Barvenik Kieran J, Srivastava Mahima, Ramdam Bibek, Sarker Sunandita, Tubaldi Eleonora, Kofinas Peter, Rand-Yadin Kinneret, Sochol Ryan D

机构信息

Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.

Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA.

出版信息

Microsyst Nanoeng. 2025 Jul 17;11(1):145. doi: 10.1038/s41378-025-00983-7.

Abstract

Glass materials are essential for microsystems applications in fields ranging from optics and photonics to microfluidics and biomedicine, which has driven growing interest in additive manufacturing-or "three-dimensional (3D) printing"-to enable glass micro/nanotechnologies. Notably, the recent discovery that 3D-nanostructured fused silica glass components can be produced via "two-photon direct laser writing (DLW)" of hybrid organic-inorganic polyhedral oligomeric silsesquioxanes (POSS)-based resins holds unique promise, particularly due to the advantages of sinterless, low-temperature (i.e., 650 °C) post-processing. At present, however, it remains unknown how implementing such methodologies to 3D print larger glass microstructures (e.g., with ≥25-µm-thick features) affects critical material properties, such as the ultimate optical and mechanical characteristics. To address this knowledge gap, here we investigate DLW-printed feature size as a key determinant of the optical and mechanical properties of POSS-based fused silica glass microstructures. Experiments for DLW-printed microlenses reveal comparable optical transparency for initial thicknesses up to 40 µm, but increasing to 60 µm significantly reduces light transmission from 87.87 ± 1.18% to 63.57 ± 5.10%. Similarly, compressive loading studies for hollow glass cylindrical microstructures show consistent behavior for initial DLW-printed wall thicknesses up to 30 µm, but significant performance degradation beyond-e.g., Young's modulus decreasing from 251.6 ± 71.9 to 99.7 ± 63.9 MPa for the 30 to 40 µm cases, respectively. As an exemplar with relevance to biomedical microinjection applications, we harness this new knowledge to DLW-print POSS-based glass microneedle arrays (MNAs) and demonstrate their ability to penetrate into a medium not possible using standard polymer MNAs. In combination, this study establishes critical optical and mechanical benchmarks that underlie the utility of DLW 3D-printed POSS-based fused silica glass microstructures in emerging applications.

摘要

玻璃材料对于从光学和光子学到微流体和生物医学等领域的微系统应用至关重要,这激发了人们对增材制造(即“三维(3D)打印”)的兴趣日益浓厚,以实现玻璃微纳技术。值得注意的是,最近发现可以通过基于有机-无机杂化多面体低聚倍半硅氧烷(POSS)的树脂的“双光子直接激光写入(DLW)”来生产3D纳米结构的熔融石英玻璃组件,这具有独特的前景,特别是由于无烧结、低温(即650°C)后处理的优点。然而,目前尚不清楚将这种方法应用于3D打印更大的玻璃微结构(例如,具有≥25μm厚特征)如何影响关键材料性能,如最终的光学和机械特性。为了填补这一知识空白,我们在此研究DLW打印特征尺寸作为基于POSS的熔融石英玻璃微结构光学和机械性能的关键决定因素。DLW打印微透镜的实验表明,初始厚度达40μm时具有相当的光学透明度,但增加到60μm时,光传输从87.87±1.18%显著降低到63.57±5.10%。同样,中空玻璃圆柱形微结构的压缩加载研究表明,初始DLW打印壁厚达30μm时表现一致,但超过该厚度性能显著下降——例如,对于30至4μm的情况,杨氏模量分别从251.6±71.9降至99.7±63.9MPa。作为与生物医学微注射应用相关的一个示例,我们利用这一新知识DLW打印基于POSS的玻璃微针阵列(MNA),并展示了它们穿透标准聚合物MNA无法穿透的介质的能力。综合来看,本研究建立了关键的光学和机械基准,这些基准是DLW 3D打印基于POSS的熔融石英玻璃微结构在新兴应用中的效用基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/12271355/42871323619f/41378_2025_983_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验