Suppr超能文献

3D打印微流控技术:策略、集成及应用方面的进展

3D printed microfluidics: advances in strategies, integration, and applications.

作者信息

Su Ruitao, Wang Fujun, McAlpine Michael C

机构信息

School of Mechanical and Power Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China.

Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.

出版信息

Lab Chip. 2023 Mar 1;23(5):1279-1299. doi: 10.1039/d2lc01177h.

Abstract

The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.

摘要

构建用于流体调节的多重微系统的能力可能会对多个领域产生重大影响,包括化学、生物学、生物医学、组织工程和软机器人技术等。3D打印作为一种制造微流控设备的引人注目的方法正越来越受到关注,因为它具有独特的能力,例如:1)快速的设计迭代和原型制作;2)自动化制造和对准的潜力;3)在单个平台内纳入多种材料类别;4)将3D微结构与预制设备、传感阵列和非平面基板集成。然而,要在研究和商业规模上广泛部署3D打印微流控技术,与打印因素、设备集成策略以及多种功能的整合相关的关键问题需要进一步发展和优化。在本综述中,我们总结了3D打印微流控技术的重要品质因数,并审视了该领域的最新进展,包括墨水特性、结构分辨率以及与功能平台的集成层次。特别地,我们强调了用热固性弹性体打印的微流控设备、具有更高自动化程度和分辨率的打印方法以及在各种3D表面上直接打印微流控技术方面的进展。3D打印微流控技术在性能和多功能性方面的重大进展表明,一个快速到来的时代即将来临,在这个时代,这些多功能设备可以摆脱微加工设施的束缚,由用户在任意环境中经过最少的前期培训按需创建。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验