Suppr超能文献

iTRAQ 蛋白质组学分析提供了对水稻甲酰四氢叶酸(formyl tetrahydrofolate)脱氢酶(formyl tetrahydrofolate deformylase)在盐响应中分子机制的深入了解。

iTRAQ-based proteomic analysis provides insights into the molecular mechanisms of rice formyl tetrahydrofolate deformylase in salt response.

机构信息

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.

State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.

出版信息

Planta. 2021 Sep 17;254(4):76. doi: 10.1007/s00425-021-03723-z.

Abstract

A new molecular mechanism of tetrahydrofolate deformylase involved in the salt response presumably affects mitochondrial and chloroplast function by regulating energy metabolism and accumulation of reactive oxygen species. High salinity severely restrains plant growth and development, consequently leading to a reduction in grain yield. It is therefore critical to identify the components involved in plant salt resistance. In our previous study, we identified a rice leaf early-senescence mutant hpa1, which encodes a formyl tetrahydrofolate deformylase (Xiong et al. in Sci China Life Sci 64(5):720-738, 2021). Here, we report that HPA1 also plays a role in the salt response. To explore the molecular mechanism of HPA1 in salt resistance, we attempted to identify the differentially expressed proteins between wild type and hpa1 mutant for salinity treatment using an iTRAQ-based comparative protein quantification approach. A total of 4598 proteins were identified, of which 279 were significantly altered, including 177 up- and 102 down-regulated proteins. A functional analysis suggested that the 279 differentially expressed proteins are involved mainly in the regulation of oxidative phosphorylation, phenylpropanoid biosynthesis, photosynthesis, posttranslational modifications, protein turnover and energy metabolism. Moreover, a deficiency in HPA1 impaired chlorophyll metabolism and photosynthesis in chloroplasts and affected the electron flow of the electron transport chain in mitochondria. These changes led to abnormal energy metabolism and accumulation of reactive oxygen species, which may affect the permeability and integrity of cell membranes, leading to cell death. In addition, the results were verified by transcriptional or physiological experiments. Our results provide an insight into a new molecular mechanism of the tetrahydrofolate cycle protein formyl tetrahydrofolate deformylase, which is involved in the salt response, presumably by affecting mitochondrial and chloroplast function regulating energy metabolism and accumulation of reactive oxygen species under salt stress.

摘要

一个新的四氢叶酸脱氢酶的分子机制涉及盐反应,可能通过调节能量代谢和活性氧的积累来影响线粒体和叶绿体的功能。高盐度严重抑制植物的生长和发育,从而导致粮食产量的减少。因此,鉴定参与植物耐盐性的成分是至关重要的。在我们之前的研究中,我们鉴定了一个水稻叶片早衰突变体 hpa1,它编码一种甲酰四氢叶酸脱氢酶(Xiong 等人,《中国科学:生命科学》64(5):720-738, 2021)。在这里,我们报告 HPA1 也在盐反应中发挥作用。为了探讨 HPA1 在耐盐性中的分子机制,我们试图使用 iTRAQ 基于比较蛋白质定量方法鉴定野生型和 hpa1 突变体在盐处理下的差异表达蛋白。共鉴定到 4598 种蛋白质,其中 279 种蛋白质显著改变,包括 177 种上调和 102 种下调蛋白。功能分析表明,这 279 种差异表达蛋白主要参与氧化磷酸化、苯丙烷生物合成、光合作用、翻译后修饰、蛋白质周转和能量代谢的调节。此外,HPA1 的缺乏会损害叶绿体中的叶绿素代谢和光合作用,并影响线粒体电子传递链中的电子流。这些变化导致异常的能量代谢和活性氧的积累,这可能影响细胞膜的通透性和完整性,导致细胞死亡。此外,结果通过转录或生理实验得到验证。我们的研究结果提供了一个新的四氢叶酸循环蛋白甲酰四氢叶酸脱氢酶的分子机制的见解,它可能通过影响线粒体和叶绿体的功能来参与盐反应,调节能量代谢和活性氧的积累可能在盐胁迫下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验