Bukowski Cynthia, Zhang Tianren, Riggleman Robert A, Crosby Alfred J
Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Chemical and Biomolecular Engineering Department, University of Pennsylvania, Philadelphia, PA 19104, USA.
Sci Adv. 2021 Sep 17;7(38):eabg9763. doi: 10.1126/sciadv.abg9763.
Through a combined approach of experiment and simulation, this study quantifies the role of entanglements in determining the mechanical properties of glassy polymer blends. Uniaxial extension experiments on 100-nm films containing a bidisperse mixture of polystyrene enable quantitative comparison with molecular dynamics (MD) simulations of a coarse-grained model for polymer glasses, where the bidisperse blends allow us to systematically tune the entanglement density of both systems. In the MD simulations, we demonstrate that not all entanglements carry substantial load at large deformation, and our analysis allows the development of a model to describe the number of effective, load-bearing entanglements per chain as a function of blend ratio. The film strength measured experimentally and the simulated film toughness are quantitatively described by a model that only accounts for load-bearing entanglements.
通过实验与模拟相结合的方法,本研究量化了缠结对确定玻璃态聚合物共混物力学性能的作用。对含有聚苯乙烯双分散混合物的100纳米薄膜进行单轴拉伸实验,能够与聚合物玻璃粗粒化模型的分子动力学(MD)模拟进行定量比较,其中双分散共混物使我们能够系统地调节两个体系的缠结密度。在分子动力学模拟中,我们证明并非所有缠结在大变形时都承担大量负荷,并且我们的分析使得能够开发一个模型来描述每条链上有效承载缠结的数量与共混比的函数关系。实验测量的薄膜强度和模拟的薄膜韧性可通过一个仅考虑承载缠结的模型进行定量描述。