Hao Qiangjun, Schossig John, Towolawi Adedayo, Xu Kai, Bayiha Erwan, Mohanakanthan Mayooran, Savastano Derek, Jayaraman Dhanya, Zhang Cheng, Lu Ping
Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States.
Chemistry Department, Long Island University (Post), Brookville, New York 11548, United States.
ACS Appl Eng Mater. 2024 Oct 2;2(10):2454-2467. doi: 10.1021/acsaenm.4c00527. eCollection 2024 Oct 25.
Ethyl cellulose (EC) is one of the most widely used cellulose derivatives. Nevertheless, challenges such as the formation of beaded fibers, low yield, and nonporous internal structure persist in electrospinning, limiting functional improvements and industrial applications. This study invented a groundbreaking high-speed electrospinning technique through sheath liquid assistance to optimize the Taylor cone, dramatically enhancing the yield, morphology, and formation of porous structures of EC nanofibers beyond what has been seen in the literature to date. Our study emphasizes the crucial role of the sheath liquid's physical and chemical properties in controlling the morphology and diameter of EC nanofibers. It was discovered that highly polar and viscous sheath liquids led to the formation of beaded structures. Most importantly, the sheath liquid-assisted method substantially increased the ejection rate of the EC solution tens and hundreds of times compared to the current low-speed electrospinning method (0.1-1 mL/h) by refining the shape of the Taylor cone and resolving low productivity challenges in conventional nanofiber production. Meanwhile, increasing the flow rate of the EC or the sheath liquid accelerated the phase separation of EC solutions, thereby promoting the formation of porous structures in EC nanofibers. A pronounced porous structure was observed when the core EC flow rate reached 25 mL/h or the sheath chloroform flow rate reached 20 mL/h. Furthermore, our sheath liquid-assisted high-speed electrospinning technique demonstrated universal applicability to ECs with varying molecular weights. This study comprehensively addressed challenges in controlling the yield, morphology, and internal structure of EC nanofibers through sheath-solution-assisted high-speed electrospinning technology. These findings provide an innovative approach to developing next-generation electrospinning technologies to enhance the yield and properties of natural polymers for sustainability.
乙基纤维素(EC)是应用最广泛的纤维素衍生物之一。然而,在静电纺丝过程中,诸如珠状纤维的形成、低产率和无孔内部结构等挑战依然存在,限制了功能改进和工业应用。本研究发明了一种开创性的高速静电纺丝技术,通过鞘液辅助来优化泰勒锥,显著提高了EC纳米纤维的产率、形态和多孔结构的形成,超越了迄今为止文献中所见的水平。我们的研究强调了鞘液的物理和化学性质在控制EC纳米纤维的形态和直径方面的关键作用。研究发现,高极性和粘性的鞘液会导致珠状结构的形成。最重要的是,与当前的低速静电纺丝方法(0.1 - 1 mL/h)相比,鞘液辅助方法通过优化泰勒锥的形状并解决传统纳米纤维生产中的低生产率挑战,将EC溶液的喷射速率提高了数十倍和数百倍。同时,提高EC或鞘液的流速加速了EC溶液的相分离,从而促进了EC纳米纤维中多孔结构的形成。当核心EC流速达到25 mL/h或鞘液氯仿流速达到20 mL/h时,观察到明显的多孔结构。此外,我们的鞘液辅助高速静电纺丝技术对不同分子量的EC均具有普遍适用性。本研究通过鞘液辅助高速静电纺丝技术全面解决了控制EC纳米纤维的产率、形态和内部结构方面的挑战。这些发现为开发下一代静电纺丝技术提供了一种创新方法,以提高天然聚合物的产率和性能,实现可持续发展。