Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
Mol Biol Evol. 2021 Dec 9;38(12):5640-5654. doi: 10.1093/molbev/msab278.
Hydrothermal vents and hydrocarbon seeps in the deep ocean are rare oases fueled by chemosynthesis. Biological communities inhabiting these ecosystems are often distributed in widely separated habitats, raising intriguing questions on how these organisms achieve connectivity and whether habitat types facilitate intraspecific divergence. The deep-sea patellogastropod limpet Bathyacmaea nipponica that colonizes both vents and seeps across ∼2,400 km in the Northwest Pacific is a feasible model to answer these questions. We analyzed 123 individuals from four vents and three seeps using a comprehensive method incorporating population genomics and physical ocean modeling. Genome survey sequencing and genotyping-by-sequencing resulted in 9,838 single-nucleotide polymorphisms for population genomic analyses. Genetic divergence and demographic analyses revealed four habitat-linked (i.e., three seep and one vent) genetic groups, with the vent genetic group established via the opportunistic invasion of a few limpet larvae from a nearby seep genetic group. TreeMix analysis uncovered three historical seep-to-vent migration events. ADMIXTURE and divMigrate analyses elucidated weak contemporary gene flow from a seep genetic group to the vent genetic group. Physical ocean modeling underlined the potential roles of seafloor topography and ocean currents in shaping the genetic connectivity, contemporary migration, and local hybridization of these deep-sea limpets. Our study highlighted the power of integrating genomic and oceanographic approaches in deciphering the demography and diversification of deep-sea organisms. Given the increasing anthropogenic activities (e.g., mining and gas hydrate extraction) affecting the deep ocean, our results have implications for the conservation of deep-sea biodiversity and establishment of marine protected areas.
深海热液喷口和烃渗漏区是化能合成作用驱动的稀有绿洲。栖息在这些生态系统中的生物群落通常分布在相距很远的栖息地,这就提出了一个有趣的问题,即这些生物如何实现连通性,以及栖息地类型是否有利于种内分化。在西北太平洋,栖息于喷口和渗漏区的深海笠贝 Bathyacmaea nipponica 是一种可行的模式生物,可以回答这些问题。我们综合运用种群基因组学和物理海洋建模方法,对来自四个喷口和三个渗漏区的 123 个个体进行了分析。基因组调查测序和测序分型得到了 9838 个单核苷酸多态性,用于种群基因组分析。遗传分化和种群动态分析揭示了四个与栖息地相关的(即三个渗漏区和一个喷口区)遗传群,喷口区遗传群是通过少数笠贝幼虫从附近的渗漏区遗传群偶然入侵而建立的。TreeMix 分析揭示了三个历史上的从渗漏区到喷口区的迁移事件。ADMIXTURE 和 divMigrate 分析阐明了来自一个渗漏区遗传群的微弱的当代基因流到喷口区遗传群。物理海洋建模强调了海底地形和洋流在塑造这些深海笠贝的遗传连通性、当代迁移和局部杂交中的潜在作用。我们的研究强调了整合基因组学和海洋学方法在揭示深海生物的种群动态和多样化方面的强大功能。考虑到越来越多的人类活动(如采矿和天然气水合物开采)正在影响深海,我们的研究结果对深海生物多样性的保护和海洋保护区的建立具有重要意义。