Suppr超能文献

采用名义群体技术开发沉浸式虚拟现实给药场景。

Developing an immersive virtual reality medication administration scenario using the nominal group technique.

机构信息

Baylor University Louise Herrington School of Nursing, 333N. Washington Ave., Dallas, TX 75246, USA.

Department of Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.

出版信息

Nurse Educ Pract. 2021 Oct;56:103191. doi: 10.1016/j.nepr.2021.103191. Epub 2021 Sep 5.

Abstract

AIM

This paper aims to describe how the Nominal Group Technique was applied to obtain focused content to develop medication administration error scenarios for future use to educate practicing RNs with immersive virtual reality simulation.

BACKGROUND

In the United States, medication errors account for up to $46 million in daily loss to hospital operational budgets. Each phase of prescribing, dispensing, administration, monitoring, and reconciliation is crucial in reducing potentially life-threatening outcomes associated with medication errors. Registered Nurses are responsible for safely administering diverse classifications of medications to patients in various healthcare settings. However, human and system factors can contribute to the exposure of hospitalized patients to a medication error. Virtual reality simulation-based education can be a methodology to educate practicing Registered Nurses on safe medication practices.

DESIGN

A Nominal Group Technique process was used to generate consensus from participating Registered Nurses on human and system factors that can contribute to medication administration errors.

METHODS

The process consisted of (a) preparation, (b) running the group with an introduction of the subject, (c) generation of ideas, (d) listing of ideas, (e) discussion of ideas, (f) ranking of top ideas, (g) voting on top ideas, (h) discussion of the vote outcome, and (i) re-ranking and rating the top items. Human and system factor idea items encompassed medication errors during ordering, prescribing, or administering medications. Both novice and experienced Registered Nurses rank-ordered these factors as those most likely to encounter or which would most likely occur during one working shift.

RESULTS

Descriptive statistics of frequencies and percentages were used to analyze the findings when grouped by human and system factor categories. Non-parametric testing with a Kruskal-Wallis test was conducted to compare the human and system factors by categories and years of Registered Nurse experience. Findings revealed that the factors of Time Management: getting behind, hurried, urgent (KW-H 11.2, df 4, p = .025) and Right Medication: medications have similar look and sound-alike names (KW-H 11.1, df 4, p = .025) impacted safe medication administration for both the novice and experienced nurse.

CONCLUSION

The NGT process identified human and system factors contributing to errors and impacting safe medication administration practices. Findings will support the creation of medication administration scenarios for use with immersive virtual reality simulation.

摘要

目的

本文旨在描述名义小组技术如何应用于获取重点内容,以开发药物管理错误场景,用于未来使用沉浸式虚拟现实模拟教育执业注册护士。

背景

在美国,药物错误导致医院运营预算每天损失高达 4600 万美元。处方、配药、给药、监测和核对的每个阶段对于减少与药物错误相关的潜在危及生命的结果都至关重要。注册护士负责在各种医疗保健环境中安全地给患者使用各种类别的药物。然而,人为因素和系统因素都可能导致住院患者面临药物错误。基于虚拟现实模拟的教育可以是一种教育执业注册护士安全用药实践的方法。

设计

名义小组技术流程用于从参与的注册护士那里就可能导致药物管理错误的人为因素和系统因素达成共识。

方法

该过程包括(a)准备,(b)用主题介绍运行小组,(c)产生想法,(d)列出想法,(e)讨论想法,(f)对想法进行排名,(g)对最佳想法进行投票,(h)讨论投票结果,以及(i)重新对顶级项目进行排名和评分。人为因素和系统因素的想法项目包括在给患者下医嘱、开处方或给药时发生的药物错误。新手和有经验的注册护士对这些因素进行了排序,以确定最有可能遇到或在一个工作班次中最有可能发生的因素。

结果

使用频率和百分比的描述性统计数据对分组为人为因素和系统因素类别的结果进行了分析。对非参数检验进行了克鲁斯卡尔-沃利斯检验,以比较按类别和注册护士工作年限划分的人为因素和系统因素。研究结果表明,时间管理因素:落后、匆忙、紧急(KW-H 11.2,df 4,p=0.025)和正确药物:药物具有相似的外观和发音相似的名称(KW-H 11.1,df 4,p=0.025)对新手和有经验的护士的安全给药都有影响。

结论

名义小组技术流程确定了导致错误和影响安全给药实践的人为因素和系统因素。研究结果将支持创建用于沉浸式虚拟现实模拟的药物管理错误场景。

相似文献

5
Reducing medication errors for adults in hospital settings.减少医院环境中成人的用药错误。
Cochrane Database Syst Rev. 2021 Nov 25;11(11):CD009985. doi: 10.1002/14651858.CD009985.pub2.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验