Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
School of Life Sciences, University of Science and Technology of China, Hefei, China.
Transl Psychiatry. 2021 Sep 17;11(1):479. doi: 10.1038/s41398-021-01605-2.
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive autosomal dominant neurodegenerative disease caused by abnormal CAG repeats in the exon 10 of ATXN3. The accumulation of the mutant ataxin-3 proteins carrying expanded polyglutamine (polyQ) leads to selective degeneration of neurons. Since the pathogenesis of SCA3 has not been fully elucidated, and no effective therapies have been identified, it is crucial to investigate the pathogenesis and seek new therapeutic strategies of SCA3. Induced pluripotent stem cells (iPSCs) can be used as the ideal cell model for the molecular pathogenesis of polyQ diseases. Abnormal CAG expansions mediated by CRISPR/Cas9 genome engineering technologies have shown promising potential for the treatment of polyQ diseases, including SCA3. In this study, SCA3-iPSCs can be corrected by the replacement of the abnormal CAG expansions (74 CAG) with normal repeats (17 CAG) using CRISPR/Cas9-mediated homologous recombination (HR) strategy. Besides, corrected SCA3-iPSCs retained pluripotent and normal karyotype, which can be differentiated into a neural stem cell (NSCs) and neuronal cells, and maintained electrophysiological characteristics. The expression of differentiation markers and electrophysiological characteristics were similar among the neuronal differentiation from normal control iPSCs (Ctrl-iPSCs), SCA3-iPSCs, and isogenic control SCA3-iPSCs. Furthermore, this study proved that the phenotypic abnormalities in SCA3 neurons, including aggregated IC2-polyQ protein, decreased mitochondrial membrane potential (MMP) and glutathione expressions, increased reactive oxygen species (ROS), intracellular Ca concentrations, and lipid peroxidase malondialdehyde (MDA) levels, all were rescued in the corrected SCA3-NCs. For the first time, this study demonstrated the feasibility of CRISPR/Cas9-mediated HR strategy to precisely repair SCA3-iPSCs, and reverse the corresponding abnormal disease phenotypes. In addition, the importance of genetic control using CRISPR/Cas9-mediated iPSCs for disease modeling. Our work may contribute to providing a potential ideal model for molecular mechanism research and autologous stem cell therapy of SCA3 or other polyQ diseases, and offer a good gene therapy strategy for future treatment.
脊髓小脑共济失调 3 型/马查多-约瑟夫病(SCA3/MJD)是一种进行性常染色体显性神经退行性疾病,由 ATXN3 外显子 10 中的异常 CAG 重复引起。携带扩展聚谷氨酰胺(polyQ)的突变 ataxin-3 蛋白的积累导致神经元的选择性退化。由于 SCA3 的发病机制尚未完全阐明,也没有确定有效的治疗方法,因此研究 SCA3 的发病机制并寻求新的治疗策略至关重要。诱导多能干细胞(iPSCs)可用作聚谷氨酰胺病分子发病机制的理想细胞模型。CRISPR/Cas9 基因组工程技术介导的异常 CAG 扩展显示出治疗聚谷氨酰胺病的巨大潜力,包括 SCA3。在这项研究中,SCA3-iPSCs 可以通过 CRISPR/Cas9 介导的同源重组(HR)策略,用正常重复(17 CAG)替换异常 CAG 扩展(74 CAG)进行纠正。此外,纠正后的 SCA3-iPSCs 保持多能性和正常核型,可分化为神经干细胞(NSCs)和神经元细胞,并保持电生理特性。神经元分化来自正常对照 iPSCs(Ctrl-iPSCs)、SCA3-iPSCs 和同基因对照 SCA3-iPSCs 之间的分化标记物的表达和电生理特征相似。此外,这项研究证明了 SCA3 神经元中的表型异常,包括聚集的 IC2-polyQ 蛋白、降低的线粒体膜电位(MMP)和谷胱甘肽表达、增加的活性氧(ROS)、细胞内 Ca 浓度和脂质过氧化物丙二醛(MDA)水平,在纠正的 SCA3-NCs 中均得到了挽救。这是首次证明 CRISPR/Cas9 介导的 HR 策略可精确修复 SCA3-iPSCs,并逆转相应的异常疾病表型。此外,使用 CRISPR/Cas9 介导的 iPSCs 进行遗传控制对疾病建模的重要性。我们的工作可能有助于为 SCA3 或其他聚谷氨酰胺病的分子机制研究和自体干细胞治疗提供潜在的理想模型,并为未来的治疗提供良好的基因治疗策略。