Suppr超能文献

基于分位数回归森林模型利用环境协变量对土壤深度进行空间预测。

Spatial prediction of soil depth using environmental covariates by quantile regression forest model.

机构信息

ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore, 560024, Karnataka, India.

出版信息

Environ Monit Assess. 2021 Sep 18;193(10):660. doi: 10.1007/s10661-021-09348-9.

Abstract

Prediction of soil depth for larger areas provides primary information on soil depth and its spatial distribution that becomes vital for land resource management, crop, nutrient, and ecosystem modeling. The present study assessed the spatial distribution of soil depth over 160,205 km of Andhra Pradesh, India, using 20 covariables by quantile regression forest (QRF). An aggregate of 2854 soil datasets compiled from various physiographic units were randomly partitioned into 80:20 ratio for calibration (2283 samples) and validation (571 samples). Landsat imagery, terrain datasets (8), and bioclimatic factors (11) were utilized as covariates. The QRF model outputs signified that precipitation, multi-resolution index of valley bottom flatness (MrVBF), mean diurnal range, isothermality, and elevation were the most important variables influencing soil depth variability across the landscape. Spatial prediction of soil depth by QRF model yielded a ME of - 1.81 cm, RMSE of 34 cm, PICP of 90.2, and a R value of 42% as compared to ordinary kriging which results in a ME of - 0.14 cm, a RMSE of 37 cm, and a R value of 32%. As soil depth is spatially dynamic and has significant correlation with terrain and environmental covariates, better prediction was possible by the QRF model. However, high-density bioclimatic variables could be utilized along with high-resolution terrain variables to improve the predictive accuracy.

摘要

对较大区域的土壤深度进行预测,可为土壤深度及其空间分布提供基础信息,这对于土地资源管理、作物、养分和生态系统建模至关重要。本研究通过分位数回归森林 (QRF) 利用 20 个协变量评估了印度安得拉邦 160,205 公里范围内的土壤深度空间分布。从不同地形单元中收集的总计 2854 个土壤数据集被随机划分为 80:20 的比例进行校准(2283 个样本)和验证(571 个样本)。使用了 Landsat 图像、地形数据集(8 个)和生物气候因素(11 个)作为协变量。QRF 模型的输出表明,降水、谷底平坦度多分辨率指数 (MrVBF)、平均日较差、等温性和海拔是影响景观中土壤深度变化的最重要变量。与普通克里金法相比,QRF 模型对土壤深度的空间预测产生了 ME 为-1.81cm、RMSE 为 34cm、PICP 为 90.2 和 R 值为 42%的结果,而普通克里金法则产生了 ME 为-0.14cm、RMSE 为 37cm 和 R 值为 32%的结果。由于土壤深度具有空间动态性,并且与地形和环境协变量具有显著相关性,因此 QRF 模型可以更好地进行预测。然而,可以利用高密度的生物气候变量以及高分辨率的地形变量来提高预测精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验