Suppr超能文献

整合杀伤细胞免疫球蛋白样受体(KIR)单倍型的模型用于预测 COVID-19 临床疾病严重程度的风险。

A model integrating Killer Immunoglobulin-like Receptor (KIR) haplotypes for risk prediction of COVID-19 clinical disease severity.

机构信息

Department of Hematology, Faculty of Medicine, Ankara University, Ankara, Turkey.

Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ankara University, Ankara, Turkey.

出版信息

Immunogenetics. 2021 Dec;73(6):449-458. doi: 10.1007/s00251-021-01227-4. Epub 2021 Sep 18.

Abstract

Associations between inherited Killer Immunoglobulin-like Receptor (KIR) genotypes and the severity of multiple RNA virus infections have been reported. This prospective study was initiated to investigate if such an association exists for COVID-19. In this cohort study performed at Ankara University, 132 COVID-19 patients (56 asymptomatic, 51 mild-intermediate, and 25 patients with severe disease) were genotyped for KIR and ligands. Ankara University Donor Registry (n:449) KIR data was used for comparison. Clinical parameters (age, gender, comorbidities, blood group antigens, inflammation biomarkers) and KIR genotypes across cohorts of asymptomatic, mild-intermediate, or severe disease were compared to construct a risk prediction model based on multivariate binary logistic regression analysis with backward elimination method. Age, blood group, number of comorbidities, CRP, D-dimer, and telomeric and centromeric KIR genotypes (tAA, tAB1, and cAB1) along with their cognate ligands were found to differ between cohorts. Two prediction models were constructed; both included age, number of comorbidities, and blood group. Inclusion of the KIR genotypes in the second prediction model exp (-3.52 + 1.56 age group - 2.74 blood group (type A vs others) + 1.26 number of comorbidities - 2.46 tAB1 with ligand + 3.17 tAA with ligand) increased the predictive performance with a 92.9% correct classification for asymptomatic and 76% for severe cases (AUC: 0.93; P < 0.0001, 95% CI 0.88, 0.99). This novel risk model, consisting of KIR genotypes with their cognate ligands, and clinical parameters but excluding earlier published inflammation-related biomarkers allow for the prediction of the severity of COVID-19 infection prior to the onset of infection. This study is listed in the National COVID-19 clinical research studies database.

摘要

已有研究报道,杀伤细胞免疫球蛋白样受体(KIR)遗传基因型与多种 RNA 病毒感染的严重程度之间存在关联。本前瞻性研究旨在探究这种关联是否存在于 COVID-19 中。该队列研究在安卡拉大学进行,共纳入 132 名 COVID-19 患者(无症状 56 例,轻症-中度 51 例,重症 25 例),对其进行 KIR 及其配体基因分型。同时使用安卡拉大学供者登记库(n=449)的 KIR 数据进行比较。对无症状、轻症-中度和重症患者队列的临床参数(年龄、性别、合并症、血型抗原、炎症标志物)和 KIR 基因型进行比较,采用多元二项逻辑回归分析结合逐步向后法构建风险预测模型。年龄、血型、合并症数量、C 反应蛋白、D-二聚体、端粒和着丝粒 KIR 基因型(tAA、tAB1 和 cAB1)及其相应配体在各队列间存在差异。构建了两个预测模型;均纳入年龄、合并症数量和血型。在第二个预测模型中纳入 KIR 基因型[(-3.52+1.56 年龄组-2.74 血型(A 型与其他型)+1.26 合并症数量-2.46 tAB1 配体+3.17 tAA 配体)]增加了预测性能,无症状患者的正确分类率为 92.9%,重症患者为 76%(AUC:0.93;P<0.0001,95%CI:0.88,0.99)。该新的风险模型由 KIR 基因型及其相应配体与临床参数组成,但不包括之前发表的炎症相关生物标志物,可在感染发生前预测 COVID-19 感染的严重程度。本研究已在国家 COVID-19 临床研究数据库中注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d28/8449213/5824db3b2bdd/251_2021_1227_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验