Suppr超能文献

从患者对全科医疗的投诉中识别医疗路径中伤害的热点和盲点。

Identifying hot spots for harm and blind spots across the care pathway from patient complaints about general practice.

机构信息

Discipline of General Practice, School of Medicine, National University of Ireland Galway, Galway, Ireland.

Irish Centre for Applied Patient Safety and Simulation, National University of Ireland Galway, Galway, Ireland.

出版信息

Fam Pract. 2022 Jul 19;39(4):579-585. doi: 10.1093/fampra/cmab109.

Abstract

INTRODUCTION

Healthcare complaints are underutilized for quality improvement in general practice. Systematic analysis of complaints has identified hot spots (areas across the care pathway where issues occur frequently) and blind spots (areas across the care pathway that cannot be observed by staff) in secondary care. The Healthcare Complaints Analysis Tool (HCAT) has been adapted to the HCAT(GP).

AIMS

This study aimed to: (i) assess whether the HCAT(GP) can systematically analyze complaints about general practice; and (ii) identify hot spots and blind spots in general practice.

METHODS

GP complaints were sampled. Complaints were coded with the HCAT(GP), classified by HCAT(GP) category (e.g. Safety, Environment, Listening), stage of care (e.g. accessing care, referral/follow-up), severity (e.g. low, medium, high), and harm (e.g. none, major). Descriptive statistics were run to identify discrete issues. A chi-square test of independence identified hot spots, and logistic regression was used for blind spots.

RESULTS

A total of 230 complaints, encompassing 432 issues (i.e. unique problems within complaints), were categorized. Relationship issues (e.g. problems with listening, communication, and patient rights) emerged most frequently (n = 174, 40%). Hot spots were identified in the consultation and the referral/follow-up stages (χ 2(5, n = 432) = 17.931, P < 0.05). A blind spot for multiple issues was identified, with the likelihood of harm increasing with number of issues (odds ratio = 2.02, confidence interval = 1.27-3.23, P < 0.05).

CONCLUSIONS

Complaints are valuable data for improving general practice. This study demonstrated that the HCAT(GP) can support the systematic analysis of general practice complaints, and identify hot spots and blind spots in care.

摘要

简介

医疗保健投诉在全科医学中未得到充分利用,以进行质量改进。系统分析投诉已经确定了二级保健中的热点(护理路径中经常出现问题的各个领域)和盲点(护理路径中工作人员无法观察到的各个领域)。医疗保健投诉分析工具(HCAT)已被改编为 HCAT(GP)。

目的

本研究旨在:(i)评估 HCAT(GP)是否可以系统地分析全科医学投诉;和(ii)确定全科医学中的热点和盲点。

方法

抽取全科医生的投诉。投诉使用 HCAT(GP)进行编码,根据 HCAT(GP)类别(例如安全、环境、倾听)、护理阶段(例如获取护理、转诊/随访)、严重程度(例如低、中、高)和伤害(例如无、主要)进行分类。进行描述性统计以确定离散问题。独立性卡方检验确定热点,逻辑回归用于确定盲点。

结果

共纳入 230 份投诉,涵盖 432 个问题(即投诉中独特的问题)。关系问题(例如倾听、沟通和患者权利方面的问题)最常出现(n = 174,40%)。在咨询和转诊/随访阶段确定了热点(χ²(5,n = 432)= 17.931,P < 0.05)。确定了多个问题的盲点,伤害的可能性随着问题数量的增加而增加(优势比 = 2.02,置信区间 = 1.27-3.23,P < 0.05)。

结论

投诉是改进全科医学的有价值数据。本研究表明,HCAT(GP)可以支持全科医学投诉的系统分析,并确定护理中的热点和盲点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a8/9295605/b5af73bcde05/cmab109_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验