Suppr超能文献

Renewal theory, Geiger counters, and the maximum number of receptors bound to a randomly haptenated polymer chain.

作者信息

Macken C A, Perelson A S

机构信息

Department of Mathematics and Statistics, University of Auckland, New Zealand.

出版信息

IMA J Math Appl Med Biol. 1986;3(2):71-97.

PMID:3453833
Abstract

Polymers containing small chemical groups (haptens) covalently attached at random along the chain are commonly used to initiate an immune response. Properties of the polymer such as its length, the spacing of the haptens, and the total number of haptens along the chain, correlate with its immune reactivity. Here we model the ability of many finite-sized cell surface receptors to bind simultaneously the haptens conjugated to a polymer chain. The binding sites on two different receptors or on separate parts of a multivalent receptor cannot be arbitrarily close to one another; so, in general, not all haptens along a polymer chain can be simultaneously bound by receptors. We develop an analogy between the steric hindrance among receptors detecting randomly placed haptens and the temporary locking of a Geiger counter that has detected a radioactive decay. Using renewal theory, we compute the probability distribution, and its moments, for the maximum number of haptens that can be simultaneously bound by monovalent receptors. We also model flexible bivalent receptors and obtain the mean and variance of the maximum number of receptors bound to randomly haptenated polymers, and the mean and variance of the maximum number of haptens bound. We demonstrate the importance of our results by applying them to immunological data and showing that, for polymers used in immunology, the effective valence of a polymer may be as much as 50% smaller than its nominal valence.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验