Chiang Cho-Chun, Breslin Jane, Weeks Sydney, Meng Zhaoxu
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634.
D.W. Daniel High School, Central, SC 29630.
Extreme Mech Lett. 2021 Nov;49. doi: 10.1016/j.eml.2021.101451. Epub 2021 Aug 19.
Nacre, a natural nanocomposite with a brick-and-mortar structure existing in the inner layer of mollusk shells, has been shown to optimize strength and toughness along the laminae (in-plane) direction. However, such natural materials more often experience impact load in the direction perpendicular to the layers (i.e., out-of-plane direction) from predators. The dynamic responses and deformation mechanisms of layered structures under impact load in the out-of-plane direction have been much less analyzed. This study investigates the dynamic mechanical behaviors of nacre-inspired layered nanocomposite films using a model system that comprises alternating multi-layer graphene (MLG) and polymethyl methacrylate (PMMA) phases. With a validated coarse-grained molecular dynamics simulation approach, we systematically study the mechanical properties and impact resistance of the MLG-PMMA nanocomposite films with different internal nanostructures, which are characterized by the layer thickness and number of repetitions while keeping the total volume constant. We find that as the layer thickness decreases, the effective modulus of the polymer phase confined by the adjacent MLG phases increases. Using ballistic impact simulations to explore the dynamic responses of nanocomposite films in the out-of-plane direction, we find that the impact resistance and dynamic failure mechanisms of the films depend on the internal nanostructures. Specifically, when each layer is relatively thick, the nanocomposite is more prone to spalling-like failure induced by compressive stress waves from the projectile impact. Whereas, when there are more repetitions, and each layer becomes relatively thin, a high-velocity projectile sequentially penetrates the nanocomposite film. In the low projectile velocity regime, the film develops crazing-like deformation zones in PMMA phases. We also show that the position of the soft PMMA phase relative to the stiff graphene sheets plays a significant role in the ballistic impact performance of the investigated films. Our study provides insights into the effect of nanostructures on the dynamic mechanical behaviors of layered nanocomposites, which can lead to effective design strategies for impact-resistant films.
珍珠层是一种存在于软体动物贝壳内层的具有砖石结构的天然纳米复合材料,已被证明可优化沿薄片(面内)方向的强度和韧性。然而,这种天然材料在受到捕食者垂直于层方向(即面外方向)的冲击载荷时更为常见。对于层状结构在面外方向冲击载荷下的动态响应和变形机制的分析要少得多。本研究使用由交替多层石墨烯(MLG)和聚甲基丙烯酸甲酯(PMMA)相组成的模型系统,研究了受珍珠层启发的层状纳米复合薄膜的动态力学行为。通过经过验证的粗粒度分子动力学模拟方法,我们系统地研究了具有不同内部纳米结构的MLG-PMMA纳米复合薄膜的力学性能和抗冲击性,这些纳米结构以层厚度和重复次数为特征,同时保持总体积不变。我们发现,随着层厚度减小,被相邻MLG相限制的聚合物相的有效模量增加。通过弹道冲击模拟来探索纳米复合薄膜在面外方向的动态响应,我们发现薄膜的抗冲击性和动态失效机制取决于内部纳米结构。具体而言,当每层相对较厚时,纳米复合材料更容易因弹丸冲击产生的压缩应力波而发生类似剥落的失效。然而,当重复次数更多且每层变得相对较薄时,高速弹丸会依次穿透纳米复合薄膜。在低弹丸速度范围内,薄膜在PMMA相中形成类似裂纹的变形区。我们还表明,软质PMMA相相对于硬质石墨烯片的位置在所研究薄膜的弹道冲击性能中起着重要作用。我们的研究深入了解了纳米结构对层状纳米复合材料动态力学行为的影响,这可为抗冲击薄膜的有效设计策略提供指导。