Suppr超能文献

临界长度尺度和应变局部化决定了多层石墨烯组件的力学性能。

Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies.

作者信息

Xia Wenjie, Ruiz Luis, Pugno Nicola M, Keten Sinan

机构信息

Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.

出版信息

Nanoscale. 2016 Mar 28;8(12):6456-62. doi: 10.1039/c5nr08488a.

Abstract

Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale L(C)(S) governs the strength of the assembly as predicted by the shear-lag model. The intermediate critical length L(C)(P) is associated with a dynamic frictional process that governs the strain localization propensity of the assembly, and hence the failure strain. The largest critical length scale L(C)(T) corresponds to the overlap length necessary to achieve 90% of the maximum theoretical toughness of the material. Our analyses provide the general guidelines for tuning the constitutive properties and toughness of multilayer 2D nanomaterials using elasticity, interlayer adhesion energy and geometry as molecular design parameters.

摘要

具有交错结构的多层石墨烯组件(MLG)或纤维表现出高韧性和断裂应变,超过了组成它们的单张石墨烯片。然而,诸如片层重叠长度等结构参数如何影响这些力学性能仍不清楚,部分原因是机械连续体模型存在局限性。通过使用我们建立的粗粒度分子建模框架来探索MLG组件在拉伸变形下的力学性能,我们确定了分别控制MLG强度、塑性应力和韧性的三种不同的临界层间重叠长度。最短的临界长度尺度L(C)(S) 如剪切滞后模型所预测的那样控制组件的强度。中间临界长度L(C)(P) 与一个动态摩擦过程相关,该过程控制组件的应变局部化倾向,进而控制断裂应变。最大的临界长度尺度L(C)(T) 对应于达到材料最大理论韧性90%所需的重叠长度。我们的分析提供了一般指导方针,可利用弹性、层间粘附能和几何形状作为分子设计参数来调整多层二维纳米材料的本构性能和韧性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验