Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States.
ACS Appl Mater Interfaces. 2021 Sep 29;13(38):45300-45314. doi: 10.1021/acsami.1c14082. Epub 2021 Sep 20.
Designer nanomaterials capable of delivering immunomodulators to specific immune cells have been extensively studied. However, emerging evidence suggests that several of these nanomaterials can nonspecifically activate NLRP3 inflammasomes, an intracellular multiprotein complex controlling various immune cell functions, leading to undesirable effects. To understand what nanoparticle attributes activate inflammasomes, we designed a multiparametric polymer supramolecular nanoparticle system to modulate various surface and core nanoparticle-associated molecular patterns (NAMPs), one at a time. We also investigated several underlying signaling pathways, including lysosomal rupture-cathepsin B maturation and calcium flux-mitochondrial ROS production, to gain mechanistic insights into NAMPs-mediated inflammasome activation. Here, we report that out of the four NAMPs tested, core hydrophobicity strongly activates and positively correlates with the NLRP3 assembly compared to surface charge, core rigidity, and surface hydrophobicity. Moreover, we demonstrate different signaling inclinations and kinetics followed by differential core hydrophobicity patterns with the most hydrophobic ones exhibiting both lysosomal rupture and calcium influx early on. Altogether, this study will help design the next generation of polymeric nanomaterials for specific regulation of inflammasome activation, aiding efficient immunotherapy and vaccine delivery.
设计能够将免疫调节剂递送到特定免疫细胞的纳米材料已得到广泛研究。然而,新出现的证据表明,其中一些纳米材料可能会非特异性地激活 NLRP3 炎性体,这是一种控制各种免疫细胞功能的细胞内多蛋白复合物,导致不良后果。为了了解哪些纳米颗粒属性会激活炎性体,我们设计了一个多参数聚合物超分子纳米颗粒系统,一次调节各种表面和核心纳米颗粒相关的分子模式(NAMPs)。我们还研究了几种潜在的信号通路,包括溶酶体破裂-组织蛋白酶 B 成熟和钙流-线粒体 ROS 产生,以深入了解 NAMPs 介导的炎性体激活的机制。在这里,我们报告在测试的四个 NAMPs 中,核心疏水性强烈激活并与 NLRP3 组装呈正相关,而与表面电荷、核心刚性和表面疏水性相比。此外,我们展示了不同的信号倾向和动力学,随后是不同的核心疏水性模式,最疏水的核心在早期表现出溶酶体破裂和钙内流。总之,这项研究将有助于设计下一代用于特异性调节炎性体激活的聚合物纳米材料,以辅助有效的免疫治疗和疫苗传递。