Suppr超能文献

利用不同性状和交叉验证在松属中进行家系群体的基因组预测。

Genomic prediction in family bulks using different traits and cross-validations in pine.

机构信息

Agronomy Department, University of Florida, Gainesville, FL 32611, USA.

Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.

出版信息

G3 (Bethesda). 2021 Sep 6;11(9). doi: 10.1093/g3journal/jkab249.

Abstract

Genomic prediction integrates statistical, genomic, and computational tools to improve the estimation of breeding values and increase genetic gain. Due to the broad diversity in mating systems, breeding schemes, propagation methods, and unit of selection, no universal genomic prediction approach can be applied in all crops. In a genome-wide family prediction (GWFP) approach, the family is the basic unit of selection. We tested GWFP in two loblolly pine (Pinus taeda L.) datasets: a breeding population composed of 63 full-sib families (5-20 individuals per family), and a simulated population with the same pedigree structure. In both populations, phenotypic and genomic data was pooled at the family level in silico. Marker effects were estimated to compute genomic estimated breeding values (GEBV) at the individual and family (GWFP) levels. Less than six individuals per family produced inaccurate estimates of family phenotypic performance and allele frequency. Tested across different scenarios, GWFP predictive ability was higher than those for GEBV in both populations. Validation sets composed of families with similar phenotypic mean and variance as the training population yielded predictions consistently higher and more accurate than other validation sets. Results revealed potential for applying GWFP in breeding programs whose selection unit are family, and for systems where family can serve as training sets. The GWFP approach is well suited for crops that are routinely genotyped and phenotyped at the plot-level, but it can be extended to other breeding programs. Higher predictive ability obtained with GWFP would motivate the application of genomic prediction in these situations.

摘要

基因组预测综合了统计学、基因组学和计算工具,以提高对育种值的估计,并增加遗传增益。由于交配系统、育种计划、繁殖方法和选择单位的广泛多样性,没有一种通用的基因组预测方法可以应用于所有作物。在全基因组家系预测(GWFP)方法中,家系是选择的基本单位。我们在两个火炬松(Pinus taeda L.)数据集上测试了 GWFP:一个由 63 个全同胞家系组成的育种群体(每个家系 5-20 个个体),和一个具有相同系谱结构的模拟群体。在这两个群体中,表型和基因组数据在计算机水平上按家系进行了汇总。估计了标记效应,以计算个体和家系(GWFP)水平的基因组估计育种值(GEBV)。每个家系少于 6 个个体,会导致家系表型表现和等位基因频率的估计不准确。在不同的场景下进行测试,GWFP 的预测能力都高于两个群体中的 GEBV。由与训练群体具有相似表型均值和方差的家系组成的验证集产生的预测值始终高于其他验证集,且更准确。结果表明,GWFP 可应用于以家系为选择单位的育种计划,以及以家系为训练集的系统。GWFP 方法非常适合那些在小区水平上常规进行基因型和表型鉴定的作物,但它也可以扩展到其他育种计划。GWFP 获得的更高预测能力将促使在这些情况下应用基因组预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba92/8496210/55939b6ff052/jkab249f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验