Suppr超能文献

在大型火炬松克隆群体中对柄锈菌病发病率进行基因组预测。

Genomic prediction for fusiform rust disease incidence in a large cloned population of Pinus taeda.

机构信息

Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-8002, USA.

ArborGen Inc., Ridgeville, SC 29472, USA.

出版信息

G3 (Bethesda). 2021 Sep 6;11(9). doi: 10.1093/g3journal/jkab235.

Abstract

In this study, 723 Pinus taeda L. (loblolly pine) clonal varieties genotyped with 16920 SNP markers were used to evaluate genomic selection for fusiform rust disease caused by the fungus Cronartium quercuum f. sp. fusiforme. The 723 clonal varieties were from five full-sib families. They were a subset of a larger population (1831 clonal varieties), field-tested across 26 locations in the southeast US. Ridge regression, Bayes B, and Bayes Cπ models were implemented to study marker-trait associations and estimate predictive ability for selection. A cross-validation scenario based on a random sampling of 80% of the clonal varieties for the model building had higher (0.71-0.76) prediction accuracies of genomic estimated breeding values compared with family and within-family cross-validation scenarios. Random sampling within families for model training to predict genomic estimated breeding values of the remaining progenies within each family produced accuracies between 0.38 and 0.66. Using four families out of five for model training was not successful. The results showed the importance of genetic relatedness between the training and validation sets. Bayesian whole-genome regression models detected three QTL with large effects on the disease outcome, explaining 54% of the genetic variation in the trait. The significance of QTL was validated with GWAS while accounting for the population structure and polygenic effect. The odds of disease incidence for heterozygous AB genotypes were 10.7 and 12.1 times greater than the homozygous AA genotypes for SNP11965 and SNP6347 loci, respectively. Genomic selection for fusiform rust disease incidence could be effective in P. taeda breeding. Markers with large effects could be fit as fixed covariates to increase the prediction accuracies, provided that their effects are validated further.

摘要

在这项研究中,使用了 723 个 Pinus taeda L.(火炬松)无性系品种,这些无性系品种使用 16920 个 SNP 标记进行了基因分型,以评估由 Cronartium quercuum f. sp. fusiforme 引起的丛锈病的基因组选择。这 723 个无性系品种来自五个全同胞家系。它们是一个更大种群(1831 个无性系品种)的一个子集,在东南美国的 26 个地点进行了田间测试。实施了岭回归、贝叶斯 B 和贝叶斯 Cπ 模型来研究标记与性状的关联,并估计选择的预测能力。基于对模型构建的无性系品种的 80%进行随机抽样的交叉验证方案具有更高的(0.71-0.76)基因组估计育种值的预测准确性,而家系内和家系内交叉验证方案的预测准确性较低。在每个家系内,使用随机抽样的 80%的无性系品种进行模型训练来预测剩余后代的基因组估计育种值,产生的准确性在 0.38 到 0.66 之间。使用五个家系中的四个进行模型训练,效果并不理想。结果表明,训练集和验证集之间遗传相关性的重要性。贝叶斯全基因组回归模型检测到三个对疾病结果有较大影响的 QTL,解释了性状遗传变异的 54%。在考虑群体结构和多基因效应的情况下,通过 GWAS 验证了 QTL 的显著性。SNP11965 和 SNP6347 位点杂合 AB 基因型的疾病发病率的几率分别比纯合 AA 基因型高 10.7 和 12.1 倍。丛锈病发病率的基因组选择可能对火炬松的育种有效。可以将具有较大效应的标记拟合为固定协变量,以提高预测准确性,但前提是要进一步验证其效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca7/8496308/95cb91ae7c95/jkab235f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验