Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
J Cardiol. 2022 Mar;79(3):334-341. doi: 10.1016/j.jjcc.2021.08.029. Epub 2021 Sep 17.
Aortic regurgitation (AR) is a common heart disease, with a relatively high prevalence of 4.9% in the Framingham Heart Study. Because the prevalence increases with advancing age, an upward shift in the age distribution may increase the burden of AR. To provide an effective screening method for AR, we developed a deep learning-based artificial intelligence algorithm for the diagnosis of significant AR using electrocardiography (ECG).
Our dataset comprised 29,859 paired data of ECG and echocardiography, including 412 AR cases, from January 2015 to December 2019. This dataset was divided into training, validation, and test datasets. We developed a multi-input neural network model, which comprised a two-dimensional convolutional neural network (2D-CNN) using raw ECG data and a fully connected deep neural network (FC-DNN) using ECG features, and compared its performance with the performances of a 2D-CNN model and other machine learning models. In addition, we used gradient-weighted class activation mapping (Grad-CAM) to identify which parts of ECG waveforms had the most effect on algorithm decision making.
The area under the receiver operating characteristic curve of the multi-input model (0.802; 95% CI, 0.762-0.837) was significantly greater than that of the 2D-CNN model alone (0.734; 95% CI, 0.679-0.783; p<0.001) and those of other machine learning models. Grad-CAM demonstrated that the multi-input model tended to focus on the QRS complex in leads I and aVL when detecting AR.
The multi-input deep learning model using 12-lead ECG data could detect significant AR with modest predictive value.
主动脉瓣反流(AR)是一种常见的心脏病,在弗雷明汉心脏研究中,其患病率相对较高,为 4.9%。由于患病率随年龄增长而增加,年龄分布的上升可能会增加 AR 的负担。为了提供 AR 的有效筛查方法,我们开发了一种基于深度学习的人工智能算法,用于使用心电图(ECG)诊断重度 AR。
我们的数据集包含 2015 年 1 月至 2019 年 12 月期间的 29859 对 ECG 和超声心动图配对数据,包括 412 例 AR 病例。该数据集分为训练、验证和测试数据集。我们开发了一个多输入神经网络模型,该模型由使用原始 ECG 数据的二维卷积神经网络(2D-CNN)和使用 ECG 特征的全连接深度神经网络(FC-DNN)组成,并将其性能与 2D-CNN 模型和其他机器学习模型的性能进行了比较。此外,我们使用梯度加权类激活映射(Grad-CAM)来确定 ECG 波形的哪些部分对算法决策的影响最大。
多输入模型的接收者操作特征曲线下面积(0.802;95%置信区间,0.762-0.837)明显大于单独的 2D-CNN 模型(0.734;95%置信区间,0.679-0.783;p<0.001)和其他机器学习模型。Grad-CAM 表明,在检测 AR 时,多输入模型倾向于关注 I 导联和 aVL 导联的 QRS 复合体。
使用 12 导联 ECG 数据的多输入深度学习模型可以检测出具有中等预测价值的重度 AR。