Suppr超能文献

亚硝酸盐依赖性一氧化氮生物合成的失活是自然进化和人工进化的铜绿假单胞菌之间重叠抗生素抗性的原因。

Inactivation of Nitrite-Dependent Nitric Oxide Biosynthesis Is Responsible for Overlapped Antibiotic Resistance between Naturally and Artificially Evolved Pseudomonas aeruginosa.

作者信息

Kuang Su-Fang, Feng Ding-Yun, Chen Zhuang-Gui, Liang Zhuo-Zheng, Xiang Juan-Juan, Li Hui, Peng Xuan-Xian, Zhang Tiantuo

机构信息

The Third Affiliated Hospital and State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen Universitygrid.12981.33, Guangzhou, People's Republic of China.

Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.

出版信息

mSystems. 2021 Oct 26;6(5):e0073221. doi: 10.1128/mSystems.00732-21. Epub 2021 Sep 21.

Abstract

Metabolic flexibility of Pseudomonas aeruginosa could lead to new strategies to combat bacterial infection. The present study used gas chromatography-mass spectrometry (GC-MS)-based metabolomics to investigate global metabolism in naturally and artificially evolved strains with cefoperazone-sulbactam (SCF) resistance (AP-R and AP-R, respectively) from the same parent strain (AP-R). Inactivation of the pyruvate cycle and nitric oxide (NO) biosynthesis was identified as characteristic features of SCF resistance in both evolved strains. Nitrite-dependent NO biosynthesis instead of an arginine-dependent NO pathway is responsible for the reduced NO, which is attributed to lower nitrite and electrons from the oxidation of NADH to NAD provided by the pyruvate cycle. Exogenous fumarate, NADH, nitrate, and nitrite promoted the NO level and thereby potentiated SCF-mediated killing. Unexpectedly, fumarate caused the elevation of nitrite, while nitrite/nitrate resulted in the increase of Cyt bc1 complex (providing electrons). These interesting findings indicate that the nitrite-dependent NO biosynthesis and the pyruvate cycle are mutual to promote NO metabolism. In addition, the NO-potentiated sensitivity to SCF was validated by NO donor sodium nitroprusside. These results reveal an endogenous NO-mediated SCF resistance and develop its reversion by metabolites in P. aeruginosa. Infections with Pseudomonas aeruginosa have become a real concern among hospital-acquired infections, especially in cystic fibrosis patients and immunocompromised individuals. Control of the pathogen is challenging due to antibiotic resistance. Since bacterial metabolic state impacts sensitivity and resistance to antibiotics, exploring and disclosing bacterial metabolic mechanisms can be used to develop a metabolome-reprogramming approach to elevate bacterial sensitivity to antibiotics. Therefore, GC-MS-based metabolomics is used to explore the similarities and differences of metabolomes between naturally and artificially evolved cefoperazone-sulbactam (SCF)-resistant P. aeruginosa (AP-R and AP-R, respectively) from the same parent strain (AP-R). It identifies the depressed nitrite-dependent nitric oxide (NO) biosynthesis as the most overlapping characteristic feature between AP-R and AP-R. This is because the pyruvate cycle fluctuates, thereby generating fewer NADH and providing fewer electrons for nitrite-dependent NO biosynthesis than the control. Interestingly, exogenous fumarate, NADH, nitrate, and nitrite as well as NO donor sodium nitroprusside promote NO generation to elevate sensitivity to SCF. These results highlight the way to understand metabolic mechanisms of antibiotic resistance and explore metabolic modulation to combat the bacterial pathogen.

摘要

铜绿假单胞菌的代谢灵活性可能会带来对抗细菌感染的新策略。本研究使用基于气相色谱 - 质谱联用(GC-MS)的代谢组学方法,来研究来自同一亲本菌株(AP-R)的具有头孢哌酮 - 舒巴坦(SCF)抗性的自然进化菌株和人工进化菌株(分别为AP-R和AP-R)的整体代谢情况。丙酮酸循环失活和一氧化氮(NO)生物合成被确定为两种进化菌株中SCF抗性的特征。亚硝酸盐依赖性NO生物合成而非精氨酸依赖性NO途径导致NO减少,这归因于亚硝酸盐减少以及丙酮酸循环提供从NADH氧化为NAD时产生的电子减少。外源性富马酸、NADH、硝酸盐和亚硝酸盐可提高NO水平,从而增强SCF介导的杀伤作用。出乎意料的是,富马酸导致亚硝酸盐升高,而亚硝酸盐/硝酸盐导致细胞色素bc1复合物增加(提供电子)。这些有趣的发现表明,亚硝酸盐依赖性NO生物合成和丙酮酸循环相互促进NO代谢。此外,NO供体硝普钠验证了NO增强对SCF的敏感性。这些结果揭示了铜绿假单胞菌中内源性NO介导的SCF抗性以及通过代谢物使其逆转的情况。铜绿假单胞菌感染已成为医院获得性感染中的一个实际问题,尤其是在囊性纤维化患者和免疫功能低下的个体中。由于抗生素耐药性,控制这种病原体具有挑战性。由于细菌的代谢状态会影响其对抗生素的敏感性和耐药性,探索和揭示细菌的代谢机制可用于开发一种代谢组重编程方法来提高细菌对抗生素的敏感性。因此,基于GC-MS的代谢组学被用于探索来自同一亲本菌株(AP-R)的自然进化和人工进化的头孢哌酮 - 舒巴坦(SCF)抗性铜绿假单胞菌(分别为AP-R和AP-R)代谢组之间的异同。研究确定亚硝酸盐依赖性一氧化氮(NO)生物合成受抑制是AP-R和AP-R之间最显著的共同特征。这是因为丙酮酸循环波动,从而产生的NADH比对照组少,为亚硝酸盐依赖性NO生物合成提供的电子也更少。有趣的是,外源性富马酸、NADH、硝酸盐、亚硝酸盐以及NO供体硝普钠可促进NO生成,从而提高对SCF的敏感性。这些结果突出了理解抗生素耐药性代谢机制以及探索代谢调节以对抗细菌病原体的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5330/8547483/51a78e7548fd/msystems.00732-21-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验