Suppr超能文献

研究低级强化反射回路在昆虫运动中的作用。

Investigating the role of low level reinforcement reflex loops in insect locomotion.

机构信息

West Virginia University, One Waterfront Place, Morgantown, WV 26506, United States of America.

Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America.

出版信息

Bioinspir Biomim. 2021 Oct 25;16(6). doi: 10.1088/1748-3190/ac28ea.

Abstract

Insects are highly capable walkers, but many questions remain regarding how the insect nervous system controls locomotion. One particular question is how information is communicated between the 'lower level' ventral nerve cord (VNC) and the 'higher level' head ganglia to facilitate control. In this work, we seek to explore this question by investigating how systems traditionally described as 'positive feedback' may initiate and maintain stepping in the VNC with limited information exchanged between lower and higher level centers. We focus on the 'reflex reversal' of the stick insect femur-tibia joint between a resistance reflex (RR) and an active reaction in response to joint flexion, as well as the activation of populations of descending dorsal median unpaired (desDUM) neurons from limb strain as our primary reflex loops. We present the development of a neuromechanical model of the stick insect () femur-tibia (FTi) and coxa-trochanter joint control networks 'in-the-loop' with a physical robotic limb. The control network generates motor commands for the robotic limb, whose motion and forces generate sensory feedback for the network. We based our network architecture on the anatomy of the non-spiking interneuron joint control network that controls the FTi joint, extrapolated network connectivity based on known muscle responses, and previously developed mechanisms to produce 'sideways stepping'. Previous studies hypothesized that RR is enacted by selective inhibition of sensory afferents from the femoral chordotonal organ, but no study has tested this hypothesis with a model of an intact limb. We found that inhibiting the network's flexion position and velocity afferents generated a reflex reversal in the robot limb's FTi joint. We also explored the intact network's ability to sustain steady locomotion on our test limb. Our results suggested that the reflex reversal and limb strain reinforcement mechanisms are both necessary but individually insufficient to produce and maintain rhythmic stepping in the limb, which can be initiated or halted by brief, transient descending signals. Removing portions of this feedback loop or creating a large enough disruption can halt stepping independent of the higher-level centers. We conclude by discussing why the nervous system might control motor output in this manner, as well as how to apply these findings to generalized nervous system understanding and improved robotic control.

摘要

昆虫是非常出色的步行者,但关于昆虫神经系统如何控制运动,仍有许多问题有待解答。一个特别的问题是,信息如何在“低级”腹神经索(VNC)和“高级”头神经节之间进行交流,以促进控制。在这项工作中,我们通过研究在上下中枢之间交换有限信息的情况下,传统上描述为“正反馈”的系统如何启动和维持 VNC 中的踏步来探索这个问题。我们专注于棒状昆虫股骨-胫骨关节的“反射反转”,即从阻力反射(RR)到关节弯曲时的主动反应之间的反转,以及作为我们主要反射回路的下行背中线未配对(desDUM)神经元群体的激活,作为腿部应变的反应。我们提出了一种棒状昆虫股骨-胫骨(FTi)和股骨-转子关节控制网络的神经力学模型,该模型与物理机器人肢体“在环”。控制网络为机器人肢体生成运动命令,其运动和力为网络生成感觉反馈。我们的网络架构基于控制 FTi 关节的非尖峰中间神经元关节控制网络的解剖结构,基于已知肌肉反应推断网络连接,并以前开发的机制产生“侧向踏步”。以前的研究假设 RR 是通过选择性抑制来自股骨索状器官的感觉传入来实现的,但没有研究使用完整肢体的模型来测试这一假设。我们发现,抑制网络的弯曲位置和速度传入会导致机器人肢体 FTi 关节的反射反转。我们还探索了完整网络在我们的测试肢体上维持稳定运动的能力。我们的结果表明,反射反转和腿部应变增强机制都是必要的,但单独不足以产生和维持肢体的节律性踏步,可以通过短暂的瞬态下行信号启动或停止。中断此反馈回路的某些部分或创建足够大的干扰可以独立于高级中枢停止踏步。最后,我们讨论了为什么神经系统可能以这种方式控制运动输出,以及如何将这些发现应用于广义的神经系统理解和改进的机器人控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验