Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France.
Université Paris Sciences et Lettres, Paris, France.
BMC Biol. 2021 Sep 21;19(1):208. doi: 10.1186/s12915-021-01126-w.
Variability is a hallmark of animal behavior. It contributes to survival by endowing individuals and populations with the capacity to adapt to ever-changing environmental conditions. Intra-individual variability is thought to reflect both endogenous and exogenous modulations of the neural dynamics of the central nervous system. However, how variability is internally regulated and modulated by external cues remains elusive. Here, we address this question by analyzing the statistics of spontaneous exploration of freely swimming zebrafish larvae and by probing how these locomotor patterns are impacted when changing the water temperatures within an ethologically relevant range.
We show that, for this simple animal model, five short-term kinematic parameters - interbout interval, turn amplitude, travelled distance, turn probability, and orientational flipping rate - together control the long-term exploratory dynamics. We establish that the bath temperature consistently impacts the means of these parameters, but leave their pairwise covariance unchanged. These results indicate that the temperature merely controls the sampling statistics within a well-defined kinematic space delineated by this robust statistical structure. At a given temperature, individual animals explore the behavioral space over a timescale of tens of minutes, suggestive of a slow internal state modulation that could be externally biased through the bath temperature. By combining these various observations into a minimal stochastic model of navigation, we show that this thermal modulation of locomotor kinematics results in a thermophobic behavior, complementing direct gradient-sensing mechanisms.
This study establishes the existence of a well-defined locomotor space accessible to zebrafish larvae during spontaneous exploration, and quantifies self-generated modulation of locomotor patterns. Intra-individual variability reflects a slow diffusive-like probing of this space by the animal. The bath temperature in turn restricts the sampling statistics to sub-regions, endowing the animal with basic thermophobicity. This study suggests that in zebrafish, as well as in other ectothermic animals, ambient temperature could be used to efficiently manipulate internal states in a simple and ethological way.
变异性是动物行为的一个标志。它通过赋予个体和种群适应不断变化的环境条件的能力,为生存做出贡献。个体内变异性被认为反映了中枢神经系统神经动力学的内源性和外源性调制。然而,变异性如何被内部调节和外部线索调制仍然难以捉摸。在这里,我们通过分析自由游泳斑马鱼幼虫自发探索的统计数据来解决这个问题,并探讨在行为相关范围内改变水温时这些运动模式如何受到影响。
我们表明,对于这个简单的动物模型,五个短期运动学参数 - 回合间隔、转弯幅度、行进距离、转弯概率和定向翻转率 - 共同控制着长期探索动力学。我们确定水温始终影响这些参数的平均值,但不改变它们的两两协方差。这些结果表明,温度只是在由这种稳健的统计结构定义的明确定义的运动学空间内控制采样统计数据。在给定的温度下,个体动物在数十分钟的时间尺度内探索行为空间,表明存在一种缓慢的内部状态调制,这种调制可以通过水温进行外部偏向。通过将这些各种观察结果结合到一个简单的导航随机模型中,我们表明这种运动学的热调制导致了对热的厌恶行为,补充了直接梯度感应机制。
这项研究确立了在自发探索期间斑马鱼幼虫可进入的明确定义的运动空间的存在,并量化了运动模式的自我生成调制。个体内变异性反映了动物对该空间的缓慢扩散样探测。水温反过来将采样统计数据限制在子区域内,使动物具有基本的对热的厌恶性。这项研究表明,在斑马鱼以及其他变温动物中,环境温度可以以简单和行为学的方式有效地操纵内部状态。