Suppr超能文献

基于深度学习的经导管主动脉瓣置换术后早期脑血管事件预测。

Deep learning-based prediction of early cerebrovascular events after transcatheter aortic valve replacement.

机构信息

Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

AlvissLabs Research, ALVISS.AI SAS, 29 rue Oudry, 75013, Paris, France.

出版信息

Sci Rep. 2021 Sep 21;11(1):18754. doi: 10.1038/s41598-021-98265-5.

Abstract

Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model's performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2-30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82-3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65-0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage.

摘要

脑血管事件 (CVE) 是经导管主动脉瓣置换术 (TAVR) 最可怕的并发症之一。由于其多因素起源,临床预测因子无法完全解释,因此 CVE 似乎难以预测。我们旨在建立一种基于深度学习的 TAVR 相关 CVE 预测工具。对连续纳入前瞻性 TAVR 注册研究的患者的综合临床和影像学特征进行了分析。CVE 包括任何中风和短暂性脑缺血发作。通过递归特征降维选择预测变量,以训练自编码器预测模型。曲线下面积 (AUC) 表示模型预测 30 天 CVE 的性能。在 2007 年至 2019 年期间纳入的 2279 例患者中,1492 例患者有临床和影像学数据。中位年龄为 83 岁,STS 评分为 4.6%。急性 (<24 小时) 和亚急性 (第 2-30 天) CVE 分别发生在 19 例 (1.3%) 和 36 例 (2.4%) 患者中。CVE 的发生与死亡风险增加相关 (HR [95%CI] 2.62 [1.82-3.78])。构建的预测模型使用不到 107 个临床和影像学变量,AUC 为 0.79 (0.65-0.93)。可以使用基于深度学习的预测算法预测 TAVR 相关 CVE。该模型已在线实施,可供广泛使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dace/8455675/c26254184830/41598_2021_98265_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验