Suppr超能文献

利用行政数据和机器学习预测经导管主动脉瓣置换术后的院内死亡率。

Predicting in-hospital mortality after transcatheter aortic valve replacement using administrative data and machine learning.

机构信息

School of Management, Clark University, Worcester, MA, USA.

Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.

出版信息

Sci Rep. 2023 Jun 24;13(1):10252. doi: 10.1038/s41598-023-37358-9.

Abstract

Transcatheter aortic valve replacement (TAVR) is the gold standard treatment for patients with symptomatic aortic stenosis. The utility of existing risk prediction tools for in-hospital mortality post-TAVR is limited due to two major factors: (a) the predictive accuracy of these tools is insufficient when only preoperative variables are incorporated, and (b) their efficacy is also compromised when solely postoperative variables are employed, subsequently constraining their application in preoperative decision support. This study examined whether statistical/machine learning models trained with solely preoperative information encoded in the administrative National Inpatient Sample database could accurately predict in-hospital outcomes (death/survival) post-TAVR. Fifteen popular binary classification methods were used to model in-hospital survival/death. These methods were evaluated using multiple classification metrics, including the area under the receiver operating characteristic curve (AUC). By analyzing 54,739 TAVRs, the top five classification models had an AUC ≥ 0.80 for two sampling scenarios: random, consistent with previous studies, and time-based, which assessed whether the models could be deployed without frequent retraining. Given the minimal practical differences in the predictive accuracies of the top five models, the L2 regularized logistic regression model is recommended as the best overall model since it is computationally efficient and easy to interpret.

摘要

经导管主动脉瓣置换术(TAVR)是有症状主动脉瓣狭窄患者的金标准治疗方法。由于两个主要因素,现有的 TAVR 术后住院死亡率风险预测工具的实用性有限:(a)仅纳入术前变量时,这些工具的预测准确性不足;(b)仅使用术后变量时,其功效也受到影响,因此限制了它们在术前决策支持中的应用。本研究探讨了仅使用在行政性全国住院患者样本数据库中编码的术前信息训练的统计/机器学习模型是否可以准确预测 TAVR 术后住院期间的结局(死亡/存活)。使用了 15 种流行的二分类方法对住院期间的生存/死亡进行建模。使用多种分类指标评估了这些方法,包括接收者操作特征曲线下的面积(AUC)。通过对 54739 例 TAVR 进行分析,对于随机抽样和基于时间的两种抽样情况,前五种分类模型的 AUC≥0.80:这与之前的研究一致,评估了这些模型是否可以在无需频繁重新训练的情况下部署。考虑到前五名模型的预测准确性之间存在最小的实际差异,推荐使用 L2 正则化逻辑回归模型作为最佳整体模型,因为它计算效率高且易于解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1860/10290690/6394ccdef70e/41598_2023_37358_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验