Suppr超能文献

基于带Softmax分类器的堆叠稀疏去噪自编码器实现复杂工业过程的稳健故障识别

Toward Robust Fault Identification of Complex Industrial Processes Using Stacked Sparse-Denoising Autoencoder With Softmax Classifier.

作者信息

Liu Jinping, Xu Longcheng, Xie Yongfang, Ma Tianyu, Wang Jie, Tang Zhaohui, Gui Weihua, Yin Huazhan, Jahanshahi Hadi

出版信息

IEEE Trans Cybern. 2023 Jan;53(1):428-442. doi: 10.1109/TCYB.2021.3109618. Epub 2022 Dec 23.

Abstract

This article proposes a robust end-to-end deep learning-induced fault recognition scheme by stacking multiple sparse-denoising autoencoders with a Softmax classifier, called stacked spare-denoising autoencoder (SSDAE)-Softmax, for the fault identification of complex industrial processes (CIPs). Specifically, sparse denoising autoencoder (SDAE) is established by integrating a sparse AE (SAE) with a denoising AE (DAE) for the low-dimensional but intrinsic feature representation of the CIP monitoring data (CIPMD) with possible noise contamination. SSDAE-Softmax is established by stacking multiple SDAEs with a layerwise pretraining procedure, and a Softmax classifier with a global fine-tuning strategy. Furthermore, SSDAE-Softmax hyperparameters are optimized by a relatively new global optimization algorithm, referred to as the state transition algorithm (STA). Benefiting from the deep learning-based feature representation scheme with the STA-based hyperparameter optimization, the underlying intrinsic characteristics of CIPMD can be learned automatically and adaptively for accurate fault identification. A numeric simulation system, the benchmark Tennessee Eastman process (TEP), and a real industrial process, that is, the continuous casting process (CCP) from a top steel plant of China, are used to validate the performance of the proposed method. Experimental results show that the proposed SSDAE-Softmax model can effectively identify various process faults, and has stronger robustness and adaptability against the noise interference in CIPMD for the process monitoring of CIPs.

摘要

本文提出了一种稳健的端到端深度学习故障识别方案,通过堆叠多个带有Softmax分类器的稀疏去噪自编码器,即堆叠稀疏去噪自编码器(SSDAE)-Softmax,用于复杂工业过程(CIP)的故障识别。具体而言,稀疏去噪自编码器(SDAE)是通过将稀疏自编码器(SAE)与去噪自编码器(DAE)集成而建立的,用于对可能存在噪声污染的CIP监测数据(CIPMD)进行低维但内在的特征表示。SSDAE-Softmax是通过采用逐层预训练过程堆叠多个SDAE以及采用全局微调策略的Softmax分类器而建立的。此外,SSDAE-Softmax的超参数通过一种相对较新的全局优化算法——状态转移算法(STA)进行优化。受益于基于深度学习的特征表示方案以及基于STA的超参数优化,可以自动且自适应地学习CIPMD的潜在内在特征,以实现准确的故障识别。使用一个数值模拟系统——基准田纳西-伊斯曼过程(TEP)以及一个实际工业过程,即中国一家顶级钢铁厂的连铸过程(CCP),来验证所提方法的性能。实验结果表明,所提的SSDAE-Softmax模型能够有效地识别各种过程故障,并且在CIP的过程监测中,对于CIPMD中的噪声干扰具有更强的鲁棒性和适应性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验