Suppr超能文献

基于残差扩张金字塔网络和全卷积去噪自编码器的滚动轴承故障诊断

Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder.

作者信息

Shi Hongmei, Chen Jingcheng, Si Jin, Zheng Changchang

机构信息

Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, Beijing Jiaotong University, Beijing 100044, China.

出版信息

Sensors (Basel). 2020 Oct 9;20(20):5734. doi: 10.3390/s20205734.

Abstract

Intelligent fault diagnosis algorithm for rolling bearings has received increasing attention. However, in actual industrial environments, most rolling bearings work under severe working conditions of variable speed and strong noise, which makes the performance of many intelligent fault diagnosis methods deteriorate sharply. In this regard, this paper proposes a new intelligent diagnosis algorithm for rolling bearing faults based on a residual dilated pyramid network and full convolutional denoising autoencoder (RDPN-FCDAE). First, a continuous wavelet transform (CWT) is used to convert original vibration signals into time-frequency images. Secondly, a deep two-stage RDPN-FCDAE model is constructed, which is divided into three parts: encoding network, decoding network and classification network. In order to obtain efficient expression of data denoising feature of encoding network, time-frequency images are first input into the encoding-decoding network for unsupervised pre-training. Then pre-trained coding network and classification network are combined into residual dilated pyramid full convolutional network (RDPFCN) for parameter fine-tuning and testing. The proposed method is applied to bearing vibration datasets of test rig with different speeds and noise modes. Compared with representative machine learning and deep learning method, the results show that the algorithm proposed is superior to other methods in diagnostic accuracy, noise robustness and feature segmentation ability.

摘要

滚动轴承的智能故障诊断算法受到了越来越多的关注。然而,在实际工业环境中,大多数滚动轴承在变速和强噪声等恶劣工况下工作,这使得许多智能故障诊断方法的性能急剧下降。对此,本文提出了一种基于残差扩张金字塔网络和全卷积去噪自编码器(RDPN-FCDAE)的滚动轴承故障智能诊断新算法。首先,使用连续小波变换(CWT)将原始振动信号转换为时频图像。其次,构建了一个深度两阶段RDPN-FCDAE模型,该模型分为三个部分:编码网络、解码网络和分类网络。为了获得编码网络数据去噪特征的有效表达,先将时频图像输入到编解码网络进行无监督预训练。然后将预训练的编码网络和分类网络组合成残差扩张金字塔全卷积网络(RDPFCN)进行参数微调与测试。将所提方法应用于不同转速和噪声模式的试验台轴承振动数据集。与具有代表性的机器学习和深度学习方法相比,结果表明所提算法在诊断准确率、噪声鲁棒性和特征分割能力方面优于其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8518/7600409/11d2a8d03e85/sensors-20-05734-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验