Suppr超能文献

通过深度稀疏自动编码器中的混合结构正则化 (MSR) 进行无监督异常检测。

Unsupervised abnormality detection through mixed structure regularization (MSR) in deep sparse autoencoders.

机构信息

CT BU, Global Advanced Technology, Philips Healthcare, Advanced Technologies Center, Building No. 34, P.O. Box 325, Haifa, 3100202, Israel.

CT BU, Global Advanced Technology, Philips Healthcare, 100 Park Ave, Highland Hills, OH, 44122, USA.

出版信息

Med Phys. 2019 May;46(5):2223-2231. doi: 10.1002/mp.13464. Epub 2019 Mar 22.

Abstract

PURPOSE

The purpose of this study is to introduce and evaluate the mixed structure regularization (MSR) approach for a deep sparse autoencoder aimed at unsupervised abnormality detection in medical images. Unsupervised abnormality detection based on identifying outliers using deep sparse autoencoders is a very appealing approach for computer-aided detection systems as it requires only healthy data for training rather than expert annotated abnormality. However, regularization is required to avoid overfitting of the network to the training data.

METHODS

We used coronary computed tomography angiography (CCTA) datasets of 90 subjects with expert annotated centerlines. We segmented coronary lumen and wall using an automatic algorithm with manual corrections where required. We defined normal coronary cross section as cross sections with a ratio between lumen and wall areas larger than 0.8. We divided the datasets into training, validation, and testing groups in a tenfold cross-validation scheme. We trained a deep sparse overcomplete autoencoder model for normality modeling with random structure and noise augmentation. We assessed the performance of our deep sparse autoencoder with MSR without denoising (SAE-MSR) and with denoising (SDAE-MSR) in comparison to deep sparse autoencoder (SAE), and deep sparse denoising autoencoder (SDAE) models in the task of detecting coronary artery disease from CCTA data on the test group.

RESULTS

The SDAE-MSR achieved the best aggregated area under the curve (AUC) with a 20% improvement and the best aggregated Average Precision (AP) with a 30% improvement upon the SAE and SDAE (AUC: 0.78 to 0.94, AP: 0.66 to 0.86) in distinguishing between coronary cross sections with mild stenosis (stenosis grade < 0.3) and coronary cross sections with severe stenosis (stenosis grade > 0.7). The improvements were statistically significant (Mann-Whitney U-test, P < 0.001). Similarly, The SDAE-MSR achieved the best aggregated AUC (AP) with an 18% (18%) improvement upon the SAE and SDAE (AUC: 0.71 to 0.84, AP: 0.68 to 0.80). The improvements were statistically significant (Mann-Whitney U-test, P < 0.05).

CONCLUSION

Deep sparse autoencoders with MSR in addition to explicit sparsity regularization term and stochastic corruption of the input data with Gaussian noise have the potential to improve unsupervised abnormality detection using deep-learning compared to common deep autoencoders.

摘要

目的

本研究旨在介绍和评估一种用于深度稀疏自编码器的混合结构正则化(MSR)方法,以实现医学图像的无监督异常检测。基于使用深度稀疏自编码器识别离群值的无监督异常检测是计算机辅助检测系统非常有吸引力的方法,因为它只需要健康数据进行训练,而不需要专家标注的异常。然而,为了避免网络对训练数据的过度拟合,需要进行正则化。

方法

我们使用了 90 名有专家标注中心线的冠状动脉计算机断层血管造影(CCTA)数据集。我们使用自动算法对冠状动脉管腔和壁进行分割,并在需要时进行手动校正。我们将正常冠状动脉横截面积定义为管腔和壁面积比大于 0.8 的横截面积。我们将数据集按照 10 折交叉验证方案分为训练、验证和测试组。我们使用随机结构和噪声增强的深度稀疏过完备自编码器模型进行正常性建模。我们评估了我们的深度稀疏自动编码器(SAE)在无去噪(SAE-MSR)和去噪(SDAE-MSR)情况下的性能,以及在测试组的 CCTA 数据中检测冠状动脉疾病的任务中的性能,与深度稀疏自动编码器(SAE)和深度稀疏去噪自动编码器(SDAE)模型进行比较。

结果

SAE-MSR 在区分轻度狭窄(狭窄程度<0.3)和严重狭窄(狭窄程度>0.7)的冠状动脉横截面积方面,获得了最佳的综合曲线下面积(AUC),提高了 20%,最佳的综合平均精度(AP),提高了 30%,优于 SAE 和 SDAE(AUC:0.78 至 0.94,AP:0.66 至 0.86)。这些改进具有统计学意义(Mann-Whitney U 检验,P<0.001)。同样,SAE-MSR 在区分轻度狭窄(狭窄程度<0.3)和严重狭窄(狭窄程度>0.7)的冠状动脉横截面积方面,获得了最佳的综合 AUC(AP),提高了 18%,优于 SAE 和 SDAE(AUC:0.71 至 0.84,AP:0.68 至 0.80)。这些改进具有统计学意义(Mann-Whitney U 检验,P<0.05)。

结论

深度稀疏自动编码器与 MSR 相结合,加上显式稀疏正则化项和输入数据的随机高斯噪声 corruption,与常见的深度自动编码器相比,具有提高基于深度学习的无监督异常检测的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验