Suppr超能文献

多巴胺信号减弱会影响小鼠运动皮层锥体神经元的兴奋性。

Reduced Dopamine Signaling Impacts Pyramidal Neuron Excitability in Mouse Motor Cortex.

机构信息

Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794.

Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York 11794.

出版信息

eNeuro. 2021 Oct 18;8(5). doi: 10.1523/ENEURO.0548-19.2021. Print 2021 Sep-Oct.

Abstract

Dopaminergic modulation is essential for the control of voluntary movement; however, the role of dopamine in regulating the neural excitability of the primary motor cortex (M1) is not well understood. Here, we investigated two modes by which dopamine influences the input/output function of M1 neurons. To test the direct regulation of M1 neurons by dopamine, we performed whole-cell recordings of excitatory neurons and measured excitability before and after local, acute dopamine receptor blockade. We then determined whether chronic depletion of dopaminergic input to the entire motor circuit, via a mouse model of Parkinson's disease, was sufficient to shift M1 neuron excitability. We show that D1 receptor (D1R) and D2R antagonism altered subthreshold and suprathreshold properties of M1 pyramidal neurons in a layer-specific fashion. The effects of D1R antagonism were primarily driven by changes to intrinsic properties, while the excitability shifts following D2R antagonism relied on synaptic transmission. In contrast, chronic depletion of dopamine to the motor circuit with 6-hydroxydopamine induced layer-specific synaptic transmission-dependent shifts in M1 neuron excitability that only partially overlapped with the effects of acute D1R antagonism. These results suggest that while acute and chronic changes in dopamine modulate the input/output function of M1 neurons, the mechanisms engaged are distinct depending on the duration and origin of the manipulation. Our study highlights the broad influence of dopamine on M1 excitability by demonstrating the consequences of local and global dopamine depletion on neuronal input/output function.

摘要

多巴胺能调制对于控制自主运动至关重要;然而,多巴胺在调节初级运动皮层(M1)的神经兴奋性中的作用还不太清楚。在这里,我们研究了多巴胺影响 M1 神经元输入/输出功能的两种模式。为了测试多巴胺对 M1 神经元的直接调节作用,我们对兴奋性神经元进行了全细胞记录,并在局部急性多巴胺受体阻断前后测量了兴奋性。然后,我们确定了通过帕金森病小鼠模型对整个运动回路的多巴胺输入进行慢性耗竭是否足以改变 M1 神经元的兴奋性。我们表明,D1 受体(D1R)和 D2 受体拮抗剂以层特异性方式改变了 M1 锥体神经元的阈下和阈上特性。D1R 拮抗剂的作用主要是通过改变内在特性驱动的,而 D2R 拮抗剂引起的兴奋性转移则依赖于突触传递。相比之下,6-羟多巴胺对运动回路的慢性多巴胺耗竭导致 M1 神经元兴奋性的层特异性突触传递依赖性变化,这与急性 D1R 拮抗剂的作用只有部分重叠。这些结果表明,尽管急性和慢性多巴胺变化调节了 M1 神经元的输入/输出功能,但所涉及的机制取决于操作的持续时间和来源。我们的研究通过证明局部和全局多巴胺耗竭对神经元输入/输出功能的影响,强调了多巴胺对 M1 兴奋性的广泛影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f988/8525657/57bf01ccda74/ENEURO.0548-19.2021_f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验