Suppr超能文献

一种用于多模态分布模拟的轮廓随机梯度朗之万动力学算法。

A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions.

作者信息

Deng Wei, Lin Guang, Liang Faming

机构信息

Department of Mathematics, Purdue University, West Lafayette, IN, USA.

Departments of Mathematics & School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.

出版信息

Adv Neural Inf Process Syst. 2020 Dec;34:15725-15736.

Abstract

We propose an adaptively weighted stochastic gradient Langevin dynamics algorithm (SGLD), so-called contour stochastic gradient Langevin dynamics (CSGLD), for Bayesian learning in big data statistics. The proposed algorithm is essentially a , which automatically the target distribution such that the simulation for a multi-modal distribution can be greatly facilitated. Theoretically, we prove a stability condition and establish the asymptotic convergence of the self-adapting parameter to a , regardless of the non-convexity of the original energy function; we also present an error analysis for the weighted averaging estimators. Empirically, the CSGLD algorithm is tested on multiple benchmark datasets including CIFAR10 and CIFAR100. The numerical results indicate its superiority over the existing state-of-the-art algorithms in training deep neural networks.

摘要

我们提出了一种自适应加权随机梯度朗之万动力学算法(SGLD),即所谓的轮廓随机梯度朗之万动力学(CSGLD),用于大数据统计中的贝叶斯学习。所提出的算法本质上是一种,它能自动目标分布,从而极大地促进对多模态分布的模拟。从理论上讲,我们证明了一个稳定性条件,并建立了自适应参数到一个的渐近收敛性,而不考虑原始能量函数的非凸性;我们还对加权平均估计器进行了误差分析。在经验上,CSGLD算法在包括CIFAR10和CIFAR100在内的多个基准数据集上进行了测试。数值结果表明,在训练深度神经网络方面,它优于现有的最先进算法。

相似文献

2
Stochastic gradient Langevin dynamics with adaptive drifts.具有自适应漂移的随机梯度朗之万动力学
J Stat Comput Simul. 2022;92(2):318-336. doi: 10.1080/00949655.2021.1958812. Epub 2021 Jul 27.
5
Accelerating DNN Training Through Selective Localized Learning.通过选择性局部学习加速深度神经网络训练
Front Neurosci. 2022 Jan 11;15:759807. doi: 10.3389/fnins.2021.759807. eCollection 2021.
6
PID Controller-Based Stochastic Optimization Acceleration for Deep Neural Networks.基于 PID 控制器的深度神经网络随机优化加速。
IEEE Trans Neural Netw Learn Syst. 2020 Dec;31(12):5079-5091. doi: 10.1109/TNNLS.2019.2963066. Epub 2020 Nov 30.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验