Suppr超能文献

利用红球菌来源的热稳定苯甲醛裂解酶模型进行连续生产α-羟基酮。

Modeling-Assisted Design of Thermostable Benzaldehyde Lyases from Rhodococcus erythropolis for Continuous Production of α-Hydroxy Ketones.

机构信息

Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Kemivägen 10, 412 96, Gothenburg, Sweden.

出版信息

Chembiochem. 2022 Apr 5;23(7):e202100468. doi: 10.1002/cbic.202100468. Epub 2021 Oct 8.

Abstract

Enantiopure α-hydroxy ketones are important building blocks of active pharmaceutical ingredients (APIs), which can be produced by thiamine-diphosphate-dependent lyases, such as benzaldehyde lyase. Here we report the discovery of a novel thermostable benzaldehyde lyase from Rhodococcus erythropolis R138 (ReBAL). While the overall sequence identity to the only experimentally confirmed benzaldehyde lyase from Pseudomonas fluorescens Biovar I (PfBAL) was only 65 %, comparison of a structural model of ReBAL with the crystal structure of PfBAL revealed only four divergent amino acids in the substrate binding cavity. Based on rational design, we generated two ReBAL variants, which were characterized along with the wild-type enzyme in terms of their substrate spectrum, thermostability and biocatalytic performance in the presence of different co-solvents. We found that the new enzyme variants have a significantly higher thermostability (up to 22 °C increase in T ) and a different co-solvent-dependent activity. Using the most stable variant immobilized in packed-bed reactors via the SpyCatcher/SpyTag system, (R)-benzoin was synthesized from benzaldehyde over a period of seven days with a stable space-time-yield of 9.3 mmol ⋅ L  ⋅ d . Our work expands the important class of benzaldehyde lyases and therefore contributes to the development of continuous biocatalytic processes for the production of α-hydroxy ketones and APIs.

摘要

对映纯α-羟基酮是活性药物成分 (API) 的重要构建块,可通过硫胺素二磷酸依赖性裂解酶如苯甲醛裂解酶来生产。在这里,我们报道了从红球菌 R138 (ReBAL) 中发现的一种新型耐热苯甲醛裂解酶。虽然与荧光假单胞菌生物型 I 中唯一经过实验确认的苯甲醛裂解酶 (PfBAL) 的整体序列同一性仅为 65%,但 ReBAL 的结构模型与 PfBAL 的晶体结构进行比较仅发现底物结合腔内有四个发散的氨基酸。基于合理设计,我们生成了两种 ReBAL 变体,并与野生型酶一起从它们的底物谱、热稳定性和在不同共溶剂存在下的生物催化性能方面进行了表征。我们发现新的酶变体具有更高的热稳定性(T 增加了 22°C)和不同的共溶剂依赖性活性。使用通过 SpyCatcher/SpyTag 系统固定在填充床反应器中的最稳定的变体,(R)-苯偶姻可在七天内从苯甲醛合成,稳定的时空产率为 9.3mmol·L -1·d -1。我们的工作扩展了重要的苯甲醛裂解酶类,因此有助于开发用于生产α-羟基酮和 API 的连续生物催化工艺。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67c0/9293332/e314418e7cb2/CBIC-23-0-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验