Suppr超能文献

通过边缘引导扩散实现准确的人体解析。

Toward Accurate Human Parsing Through Edge Guided Diffusion.

出版信息

IEEE Trans Image Process. 2024;33:2530-2543. doi: 10.1109/TIP.2024.3379931. Epub 2024 Apr 1.

Abstract

Existing human parsing frameworks commonly employ joint learning of semantic edge detection and human parsing to facilitate the localization around boundary regions. Nevertheless, the parsing prediction within the interior of the part contour may still exhibit inconsistencies due to the inherent ambiguity of fine-grained semantics. In contrast, binary edge detection does not suffer from such fine-grained semantic ambiguity, leading to a typical failure case where misclassification occurs inner the part contour while the semantic edge is accurately detected. To address these challenges, we develop a novel diffusion scheme that incorporates guidance from the detected semantic edge to mitigate this problem by propagating corrected classified semantics into the misclassified regions. Building upon this diffusion scheme, we present an Edge Guided Diffusion Network (EGDNet) for human parsing, which can progressively refine the parsing predictions to enhance the accuracy and coherence of human parsing results. Moreover, we design a horizontal-vertical aggregation to exploit inherent correlations among body parts along both the horizontal and vertical axes, which aims at enhancing the initial parsing results. Extensive experimental evaluations on various challenging datasets demonstrate the effectiveness of the proposed EGDNet. Remarkably, our EGDNet shows impressive performances on six benchmark datasets, including four human body parsing datasets (LIP, CIHP, ATR, and PASCAL-Person-Part), and two human face parsing datasets (CelebAMask-HQ and LaPa).

摘要

现有的人解析框架通常采用语义边缘检测和人解析的联合学习,以促进边界区域的定位。然而,由于细粒度语义的固有歧义,零件轮廓内部的解析预测仍然可能不一致。相比之下,二进制边缘检测不会受到这种细粒度语义歧义的影响,导致一个典型的失败案例,即语义边缘被准确检测到,而内部的零件轮廓却发生了错误分类。为了解决这些挑战,我们开发了一种新的扩散方案,该方案引入了检测到的语义边缘的指导,通过将纠正后的分类语义传播到错误分类的区域,来减轻这个问题。基于这个扩散方案,我们提出了一个边缘引导扩散网络(EGDNet)来进行人体解析,它可以逐步细化解析预测,提高人体解析结果的准确性和一致性。此外,我们设计了一种水平-垂直聚合方法,利用身体各部分在水平和垂直方向上的固有相关性,旨在增强初始解析结果。在各种具有挑战性的数据集上进行的广泛实验评估证明了所提出的 EGDNet 的有效性。值得注意的是,我们的 EGDNet 在六个基准数据集上表现出色,包括四个人体解析数据集(LIP、CIHP、ATR 和 PASCAL-Person-Part)和两个人脸解析数据集(CelebAMask-HQ 和 LaPa)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验