Suppr超能文献

社交网络中的习惯效应可能是无声地削弱影响力最大化努力的潜在因素。

Habituation effect in social networks as a potential factor silently crushing influence maximisation efforts.

机构信息

Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, 71-210, Szczecin, Poland.

出版信息

Sci Rep. 2021 Sep 24;11(1):19055. doi: 10.1038/s41598-021-98493-9.

Abstract

Information spreading processes are a key phenomenon observed within real and digital social networks. Network members are often under pressure from incoming information with different sources, such as informative campaigns for increasing awareness, viral marketing, rumours, fake news, or the results of other activities. Messages are often repeated, and such repetition can improve performance in the form of cumulative influence. Repeated messages may also be ignored due to a limited ability to process information. Learning processes are leading to the repeated messages being ignored, as their content has already been absorbed. In such cases, responsiveness decreases with repetition, and the habituation effect can be observed. Here, we analyse spreading processes while considering the habituation effect and performance drop along with an increased number of contacts. The ability to recover when reducing the number of messages is also considered. The results show that even low habituation and a decrease in propagation probability may substantially impact network coverage. This can lead to a significant reduction in the potential for a seed set selected with an influence maximisation method. Apart from the impact of the habituation effect on spreading processes, we show how it can be reduced with the use of the sequential seeding approach. This shows that sequential seeding is less sensitive to the habituation effect than single-stage seeding, and that it can be used to limit the negative impact on users overloaded with incoming messages.

摘要

信息传播过程是真实和数字社交网络中观察到的关键现象。网络成员经常受到来自不同来源的信息的压力,例如提高意识的信息活动、病毒式营销、谣言、假新闻或其他活动的结果。信息经常被重复,这种重复可以以累积影响的形式提高性能。由于信息处理能力有限,重复的信息也可能被忽略。学习过程导致重复的信息被忽略,因为它们的内容已经被吸收。在这种情况下,响应能力会随着重复而下降,并且可以观察到习惯化效应。在这里,我们在考虑习惯化效应和随着接触次数增加而性能下降的情况下分析传播过程。还考虑了减少信息数量时恢复的能力。结果表明,即使习惯化程度低且传播概率降低,也可能对网络覆盖范围产生重大影响。这可能导致通过影响力最大化方法选择的种子集的潜力显著降低。除了习惯化效应对传播过程的影响外,我们还展示了如何通过使用顺序播种方法来减少这种影响。这表明顺序播种比单阶段播种对习惯化效应的敏感性更低,并且可以用于限制对过载的用户的负面影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f099/8463708/130d2f3bcca3/41598_2021_98493_Fig3_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验