Suppr超能文献

无监督标注的癌症检测和常规组织病理学中基因型预测

Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology.

机构信息

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany.

出版信息

J Pathol. 2022 Jan;256(1):50-60. doi: 10.1002/path.5800. Epub 2021 Oct 22.

Abstract

Deep learning is a powerful tool in computational pathology: it can be used for tumor detection and for predicting genetic alterations based on histopathology images alone. Conventionally, tumor detection and prediction of genetic alterations are two separate workflows. Newer methods have combined them, but require complex, manually engineered computational pipelines, restricting reproducibility and robustness. To address these issues, we present a new method for simultaneous tumor detection and prediction of genetic alterations: The Slide-Level Assessment Model (SLAM) uses a single off-the-shelf neural network to predict molecular alterations directly from routine pathology slides without any manual annotations, improving upon previous methods by automatically excluding normal and non-informative tissue regions. SLAM requires only standard programming libraries and is conceptually simpler than previous approaches. We have extensively validated SLAM for clinically relevant tasks using two large multicentric cohorts of colorectal cancer patients, Darmkrebs: Chancen der Verhütung durch Screening (DACHS) from Germany and Yorkshire Cancer Research Bowel Cancer Improvement Programme (YCR-BCIP) from the UK. We show that SLAM yields reliable slide-level classification of tumor presence with an area under the receiver operating curve (AUROC) of 0.980 (confidence interval 0.975, 0.984; n = 2,297 tumor and n = 1,281 normal slides). In addition, SLAM can detect microsatellite instability (MSI)/mismatch repair deficiency (dMMR) or microsatellite stability/mismatch repair proficiency with an AUROC of 0.909 (0.888, 0.929; n = 2,039 patients) and BRAF mutational status with an AUROC of 0.821 (0.786, 0.852; n = 2,075 patients). The improvement with respect to previous methods was validated in a large external testing cohort in which MSI/dMMR status was detected with an AUROC of 0.900 (0.864, 0.931; n = 805 patients). In addition, SLAM provides human-interpretable visualization maps, enabling the analysis of multiplexed network predictions by human experts. In summary, SLAM is a new simple and powerful method for computational pathology that could be applied to multiple disease contexts. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.

摘要

深度学习是计算病理学中的强大工具

它可用于肿瘤检测,也可仅通过组织病理学图像预测遗传改变。传统上,肿瘤检测和遗传改变预测是两个独立的工作流程。较新的方法已经将它们结合在一起,但需要复杂的、人工设计的计算管道,从而限制了可重复性和稳健性。为了解决这些问题,我们提出了一种新的同时进行肿瘤检测和遗传改变预测的方法:切片级评估模型(SLAM)使用单个现成的神经网络,无需任何人工注释,即可直接从常规病理切片预测分子改变,优于以前的方法,因为它可以自动排除正常和无信息的组织区域。SLAM 仅需要标准编程库,并且比以前的方法在概念上更简单。我们使用来自德国的 Darmkrebs:Chancen der Verhütung durch Screening (DACHS) 和来自英国的 Yorkshire Cancer Research Bowel Cancer Improvement Programme (YCR-BCIP) 的两个大型多中心结直肠癌患者队列,对 SLAM 进行了广泛的临床相关任务验证。我们证明,SLAM 可对肿瘤存在进行可靠的切片级分类,接收器操作特征曲线下的面积(AUROC)为 0.980(置信区间 0.975,0.984;n=2297 个肿瘤和 n=1281 个正常切片)。此外,SLAM 可以检测微卫星不稳定性(MSI)/错配修复缺陷(dMMR)或微卫星稳定性/错配修复效率,AUROC 为 0.909(0.888,0.929;n=2039 名患者),以及 BRAF 突变状态,AUROC 为 0.821(0.786,0.852;n=2075 名患者)。在一个大型外部测试队列中验证了与以前方法的改进,在该队列中,MSI/dMMR 状态的检测 AUROC 为 0.900(0.864,0.931;n=805 名患者)。此外,SLAM 提供了人类可解释的可视化地图,使人类专家能够分析多路复用网络预测。总之,SLAM 是一种新的简单而强大的计算病理学方法,可应用于多种疾病环境。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验