深度学习在结直肠肿瘤微卫星不稳定性临床检测中的应用。
Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning.
机构信息
Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands; Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.
出版信息
Gastroenterology. 2020 Oct;159(4):1406-1416.e11. doi: 10.1053/j.gastro.2020.06.021. Epub 2020 Jun 17.
BACKGROUND & AIMS: Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed.
METHODS
We collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N = 6406 specimens) and validated in an external cohort (n = 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC).
RESULTS
The deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 (range, 0.59-0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC of 0.95 (range, 0.92-0.96) without image preprocessing and an AUROC of 0.96 (range, 0.93-0.98) after color normalization.
CONCLUSIONS
We developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using H&E-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens.
背景与目的
结直肠肿瘤中的微卫星不稳定性(MSI)和错配修复缺陷(dMMR)用于选择患者的治疗方法。与分子检测相比,深度学习可以更快、更经济地在常规组织学切片上检测肿瘤样本中的 MSI 和 dMMR。然而,该技术的临床应用需要高性能和多站点验证,而这些尚未进行。
方法
我们从德国、荷兰、英国和美国的 MSIDETECT 研究联盟的 8836 例(所有阶段)结直肠肿瘤中收集了 H&E 染色切片和分子分析结果,用于 MSI 和 dMMR。通过组织微阵列免疫组织化学分析缺失 MLH1、MSH2、MSH6 和/或 PMS2 来识别 dMMR 标本。通过遗传分析识别 MSI 标本。我们训练了一个深度学习检测器来识别这些切片中的 MSI 样本;通过交叉验证(N=6406 个标本)和外部队列验证(n=771 个标本)评估性能。预设的终点是接收器工作特征曲线下面积(AUROC)和精度-召回曲线下面积(AUPRC)。
结果
深度学习检测器识别出 dMMR 或 MSI 标本的平均 AUROC 曲线为 0.92(下限为 0.91,上限为 0.93)和 AUPRC 为 0.63(范围为 0.59-0.65),或 67%特异性和 95%敏感性,在交叉验证开发队列中。在验证队列中,分类器在未进行图像预处理的情况下,识别 dMMR 样本的 AUROC 为 0.95(范围为 0.92-0.96),在进行颜色归一化后,AUROC 为 0.96(范围为 0.93-0.98)。
结论
我们开发了一种深度学习系统,该系统使用 H&E 染色切片检测结直肠肿瘤标本中的 dMMR 或 MSI;在一个大型国际验证队列中,它检测到 dMMR 组织的 AUROC 为 0.96。该系统可用于高通量、低成本评估结直肠组织标本。
相似文献
Gastroenterology. 2020-10
Appl Immunohistochem Mol Morphol. 2019-10
Zhonghua Bing Li Xue Za Zhi. 2021-5-8
Zhonghua Bing Li Xue Za Zhi. 2021-4-8
Zhonghua Bing Li Xue Za Zhi. 2018-11-8
引用本文的文献
Nat Rev Gastroenterol Hepatol. 2025-8-7
Transl Cancer Res. 2025-5-30
Nat Rev Cancer. 2025-4
本文引用的文献
Cancers (Basel). 2019-10-15