Suppr超能文献

相似文献

1
Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning.
Gastroenterology. 2020 Oct;159(4):1406-1416.e11. doi: 10.1053/j.gastro.2020.06.021. Epub 2020 Jun 17.
2
Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents.
Gastroenterology. 2015 Oct;149(4):1017-29.e3. doi: 10.1053/j.gastro.2015.06.013. Epub 2015 Jun 25.
4
Mismatch Repair Deficiency in Endometrial Cancer: Immunohistochemistry Staining and Clinical Implications.
Appl Immunohistochem Mol Morphol. 2019 Oct;27(9):678-682. doi: 10.1097/PAI.0000000000000641.
6
Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology.
J Pathol. 2022 Jan;256(1):50-60. doi: 10.1002/path.5800. Epub 2021 Oct 22.
7
[Analysis of microsatellite instability in endometroid carcinoma with deficient mismatch repair].
Zhonghua Bing Li Xue Za Zhi. 2021 May 8;50(5):470-475. doi: 10.3760/cma.j.cn112151-20210201-00114.
8
[Mismatch repair protein expression of colorectal cancer: a retrospective analysis of 3 428 cases].
Zhonghua Bing Li Xue Za Zhi. 2021 Apr 8;50(4):369-375. doi: 10.3760/cma.j.cn112151-20200731-00608.
9
DNA mismatch repair deficiency and hereditary syndromes in Latino patients with colorectal cancer.
Cancer. 2017 Oct 1;123(19):3732-3743. doi: 10.1002/cncr.30790. Epub 2017 Jun 22.
10
[Correlation between mismatch-repair protein expression and clinicopathologic features in 658 colorectal cancers].
Zhonghua Bing Li Xue Za Zhi. 2018 Nov 8;47(11):827-833. doi: 10.3760/cma.j.issn.0529-5807.2018.11.003.

引用本文的文献

2
The future of pathology in gastroenterology and hepatology.
Nat Rev Gastroenterol Hepatol. 2025 Aug 7. doi: 10.1038/s41575-025-01103-6.
4
Comprehensive application of artificial intelligence in colorectal cancer: A review.
iScience. 2025 Jun 23;28(7):112980. doi: 10.1016/j.isci.2025.112980. eCollection 2025 Jul 18.
5
Systematic review and meta-analysis of deep learning for MSI-H in colorectal cancer whole slide images.
NPJ Digit Med. 2025 Jul 18;8(1):456. doi: 10.1038/s41746-025-01848-z.
6
Artificial intelligence-based pathological analysis of liver cancer: Current advancements and interpretative strategies.
ILIVER. 2024 Feb 8;3(1):100082. doi: 10.1016/j.iliver.2024.100082. eCollection 2024 Mar.
8
Deep learning for fine-grained molecular-based colorectal cancer classification.
Transl Cancer Res. 2025 May 30;14(5):3035-3046. doi: 10.21037/tcr-2024-2348. Epub 2025 May 8.
10
Defining a 'cells to society' research framework for appendiceal tumours.
Nat Rev Cancer. 2025 Apr;25(4):293-315. doi: 10.1038/s41568-024-00788-2. Epub 2025 Feb 20.

本文引用的文献

1
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.
Nat Cancer. 2020 Aug;1(8):800-810. doi: 10.1038/s43018-020-0085-8. Epub 2020 Jul 27.
3
6
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.
Nat Med. 2019 Aug;25(8):1301-1309. doi: 10.1038/s41591-019-0508-1. Epub 2019 Jul 15.
7
Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
Nat Med. 2019 Jul;25(7):1054-1056. doi: 10.1038/s41591-019-0462-y. Epub 2019 Jun 3.
9
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.
PLoS Med. 2019 Jan 24;16(1):e1002730. doi: 10.1371/journal.pmed.1002730. eCollection 2019 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验