El Nahhas Omar S M, van Treeck Marko, Wölflein Georg, Unger Michaela, Ligero Marta, Lenz Tim, Wagner Sophia J, Hewitt Katherine J, Khader Firas, Foersch Sebastian, Truhn Daniel, Kather Jakob Nikolas
Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
StratifAI GmbH, Dresden, Germany.
Nat Protoc. 2025 Jan;20(1):293-316. doi: 10.1038/s41596-024-01047-2. Epub 2024 Sep 16.
Hematoxylin- and eosin-stained whole-slide images (WSIs) are the foundation of diagnosis of cancer. In recent years, development of deep learning-based methods in computational pathology has enabled the prediction of biomarkers directly from WSIs. However, accurately linking tissue phenotype to biomarkers at scale remains a crucial challenge for democratizing complex biomarkers in precision oncology. This protocol describes a practical workflow for solid tumor associative modeling in pathology (STAMP), enabling prediction of biomarkers directly from WSIs by using deep learning. The STAMP workflow is biomarker agnostic and allows for genetic and clinicopathologic tabular data to be included as an additional input, together with histopathology images. The protocol consists of five main stages that have been successfully applied to various research problems: formal problem definition, data preprocessing, modeling, evaluation and clinical translation. The STAMP workflow differentiates itself through its focus on serving as a collaborative framework that can be used by clinicians and engineers alike for setting up research projects in the field of computational pathology. As an example task, we applied STAMP to the prediction of microsatellite instability (MSI) status in colorectal cancer, showing accurate performance for the identification of tumors high in MSI. Moreover, we provide an open-source code base, which has been deployed at several hospitals across the globe to set up computational pathology workflows. The STAMP workflow requires one workday of hands-on computational execution and basic command line knowledge.
苏木精和伊红染色的全切片图像(WSIs)是癌症诊断的基础。近年来,计算病理学中基于深度学习方法的发展使得能够直接从WSIs预测生物标志物。然而,在精准肿瘤学中,将组织表型与生物标志物进行大规模准确关联仍然是普及复杂生物标志物的关键挑战。本方案描述了一种病理学中实体瘤关联建模(STAMP)的实用工作流程,通过使用深度学习能够直接从WSIs预测生物标志物。STAMP工作流程与生物标志物无关,允许将遗传和临床病理表格数据作为额外输入,与组织病理学图像一起使用。该方案由五个主要阶段组成,已成功应用于各种研究问题:正式问题定义、数据预处理、建模、评估和临床转化。STAMP工作流程的独特之处在于它专注于作为一个协作框架,临床医生和工程师都可以使用它来建立计算病理学领域的研究项目。作为一个示例任务,我们将STAMP应用于结直肠癌微卫星不稳定性(MSI)状态的预测,显示出对高MSI肿瘤识别的准确性能。此外,我们提供了一个开源代码库,已在全球多家医院部署以建立计算病理学工作流程。STAMP工作流程需要一个工作日的实际计算执行和基本的命令行知识。