Health Informatics Institute, University of South Florida, Tampa, Florida, USA.
Department of Biostatistics, University of Florida, Tampa, Florida, USA.
Stat Med. 2021 Dec 20;40(29):6689-6706. doi: 10.1002/sim.9206. Epub 2021 Sep 25.
In many clinical studies, evaluating the association between longitudinal and survival outcomes is of primary concern. For analyzing data from such studies, joint modeling of longitudinal and survival data becomes an appealing approach. In some applications, there are multiple longitudinal outcomes whose longitudinal pattern is difficult to describe by a parametric form. For such applications, existing research on joint modeling is limited. In this article, we develop a novel joint modeling method to fill the gap. In the new method, a local polynomial mixed-effects model is used for describing the nonparametric longitudinal pattern of the multiple longitudinal outcomes. Two model estimation procedures, that is, the local EM algorithm and the local penalized quasi-likelihood estimation, are explored. Practical guidelines for choosing tuning parameters and for variable selection are provided. The new method is justified by some theoretical arguments and numerical studies.
在许多临床研究中,评估纵向和生存结局之间的关联是首要关注的问题。对于分析此类研究中的数据,纵向和生存数据的联合建模成为一种吸引人的方法。在某些应用中,存在多个纵向结局,其纵向模式很难用参数形式来描述。对于此类应用,现有的联合建模研究是有限的。在本文中,我们开发了一种新的联合建模方法来填补这一空白。在新方法中,局部多项式混合效应模型用于描述多个纵向结局的非参数纵向模式。探讨了两种模型估计程序,即局部 EM 算法和局部惩罚拟似然估计。提供了选择调整参数和变量选择的实用指南。新方法通过一些理论论证和数值研究得到了证明。